280
Views
8
CrossRef citations to date
0
Altmetric
Original Articles

Allosterism in human complement component 5a (hC5a): a damper of C5a receptor (C5aR) signaling

, &
Pages 1201-1213 | Received 17 Jun 2015, Accepted 13 Jul 2015, Published online: 18 Aug 2015

References

  • Bajic, G., Yatime, L., Klos, A., & Andersen, G. R. (2013). Human C3a and C3a desArg anaphylatoxins have conserved structures, in contrast to C5a and C5a desArg. Protein Science, 22, 204–212.10.1002/pro.2200
  • Baruah, A., Bhattacherjee, A., & Biswas, P. (2012). Role of conformational heterogeneity on protein misfolding. Soft Matter, 8, 4432–4440.10.1039/c2sm06608d
  • Bauvois, B. (2001). Transmembrane proteases in focus: Diversity and redundancy? Journal of Leukocyte Biology, 70, 11–17.
  • Bielecka, E., Scavenius, C., Kantyka, T., Jusko, M., Mizgalska, D., Szmigielski, B., … Potempa, J. (2014). Peptidyl arginine deiminase from Porphyromonas gingivalis abolishes anaphylatoxin C5a activity. Journal of Biological Chemistry, 289, 32481–32487.10.1074/jbc.C114.617142
  • Bubeck, P., Grotzinger, J., Winkler, M., Kohl, J., Wollmer, A., Klos, A., & Bautsch, W. (1994). Site-specific mutagenesis of residues in the human C5a anaphylatoxin which are involved in possible interaction with the C5a receptor. European Journal of Biochemistry, 219, 897–904.10.1111/ejb.1994.219.issue-3
  • Bursulaya, B. D., & Brooks, C. L. (1999). Folding free energy surface of a three-stranded β-sheet protein. Journal of the American Chemical Society, 121, 9947–9951.10.1021/ja991764l
  • Cain, S. A., Coughlan, T., & Monk, P. N. (2001). Mapping the ligand-binding site on the C5a receptor: Arginine74 of C5a contacts aspartate282 of the C5a receptor. Biochemistry, 40, 14047–14052.10.1021/bi011055w
  • Christopoulos, A., & Kenakin, T. (2002). G protein-coupled receptor allosterism and complexing. Pharmacological Reviews, 54, 323–374.10.1124/pr.54.2.323
  • Cook, W. J., Galakatos, N., Boyar, W. C., Walter, R. L., & Ealick, S. E. (2010). Structure of human desArg-C5a. Acta Crystallographica Section D Biological Crystallography, 66, 190–197.10.1107/S0907444909049051
  • Cui, Q., & Karplus, M. (2008). Allostery and cooperativity revisited. Protein Science, 17, 1295–1307.10.1110/ps.03259908
  • Donald, J. E., Kulp, D. W., & DeGrado, W. F. (2011). Salt bridges: Geometrically specific, designable interactions. Proteins: Structure, Function, and Bioinformatics, 79, 898–915.10.1002/prot.22927
  • Dyson, H. J., & Wright, P. E. (2005). Intrinsically unstructured proteins and their functions. Nature Reviews Molecular Cell Biology, 6, 197–208.10.1038/nrm1589
  • Ferreon, A. C., Ferreon, J. C., Wright, P. E., & Deniz, A. A. (2013). Modulation of allostery by protein intrinsic disorder. Nature, 498, 390–394.10.1038/nature12294
  • Fujita, E., Farkas, I., Campbell, W., Baranyi, L., Okada, H., & Okada, N. (2004). Inactivation of C5a anaphylatoxin by a peptide that is complementary to a region of C5a. The Journal of Immunology, 172, 6382–6387.10.4049/jimmunol.172.10.6382
  • Goodey, N. M., & Benkovic, S. J. (2008). Allosteric regulation and catalysis emerge via a common route. Nature Chemical Biology, 4, 474–482.10.1038/nchembio.98
  • Gunasekaran, K., Ma, B., & Nussinov, R. (2004). Is allostery an intrinsic property of all dynamic proteins? Proteins: Structure, Function, and Bioinformatics, 57, 433–443.10.1002/prot.20232
  • Guo, R. F., & Ward, P. A. (2005). Role of C5a in inflammatory responses. Annual Review of Immunology, 23, 821–852.10.1146/annurev.immunol.23.021704.115835
  • Habchi, J., Tompa, P., Longhi, S., & Uversky, V. N. (2014). Introducing protein intrinsic disorder. Chemical Reviews, 114, 6561–6588.10.1021/cr400514h
  • Hess, B., Kutzner, C., van der Spoel, D., & Lindahl, E. (2008). GROMACS 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation. Journal of Chemical Theory and Computation, 4, 435–447.10.1021/ct700301q
  • Hetland, G., Moen, O., Bergh, K., Hogasen, K., Hack, C. E., Mollnes, T. E., & Fosse, E. (1997). Both plasma- and leukocyte-associated C5a are essential for assessment of C5a generation in vivo. The Annals of Thoracic Surgery, 63, 1076–1080.10.1016/S0003-4975(96)01255-6
  • Higginbottom, A., Cain, S. A., Woodruff, T. M., Proctor, L. M., Madala, P. K., Tyndall, J. D., … Monk, P. N. (2005). Comparative agonist/antagonist responses in mutant human C5a receptors define the ligand binding site. Journal of Biological Chemistry, 280, 17831–17840.10.1074/jbc.M410797200
  • Hilser, V. J., & Thompson, E. B. (2007). Intrinsic disorder as a mechanism to optimize allosteric coupling in proteins. Proceedings of the National Academy of Sciences, 104, 8311–8315.10.1073/pnas.0700329104
  • Hilser, V. J., Wrabl, J. O., & Motlagh, H. N. (2012). Structural and energetic basis of allostery. Annual Review of Biophysics, 41, 585–609.10.1146/annurev-biophys-050511-102319
  • Johnson, R. J., & Chenoweth, D. E. (1985). Structure and function of human C5a anaphylatoxin. Selective modification of tyrosine 23 alters biological activity but not antigenicity. Journal of Biological Chemistry, 260, 10339–10345.
  • Jordan, J. B., Poppe, L., Haniu, M., Arvedson, T., Syed, R., Li, V., … Sasu, B. J. (2009). Hepcidin revisited, disulfide connectivity, dynamics, and structure. Journal of Biological Chemistry, 284, 24155–24167.10.1074/jbc.M109.017764
  • Joshi, S., Rana, S., Wangikar, P., & Durani, S. (2006). Computational design of proteins stereochemically optimized in size, stability, and folding speed. Biopolymers, 83, 122–134.10.1002/bip.v83:2
  • Kenakin, T., & Miller, L. J. (2010). Seven transmembrane receptors as shapeshifting proteins: The impact of allosteric modulation and functional selectivity on new drug discovery. Pharmacological Reviews, 62, 265–304.10.1124/pr.108.000992
  • Kern, D., & Zuiderweg, E. R. (2003). The role of dynamics in allosteric regulation. Current Opinion in Structural Biology, 13, 748–757.10.1016/j.sbi.2003.10.008
  • Kessel, C., Nandakumar, K. S., Peters, F. B., Gauba, V., Schultz, P. G., & Holmdahl, R. (2014). A single functional group substitution in C5a breaks B cell and T cell tolerance and protects against experimental arthritis. Arthritis & Rheumatology, 66, 610–621.10.1002/art.v66.3
  • Klos, A., Wende, E., Wareham, K. J., & Monk, P. N. (2013). International Union of Pharmacology. LXXXVII. Complement peptide C5a, C4a, and C3a receptors. Pharmacological Reviews, 65, 500–543.10.1124/pr.111.005223
  • Kola, A., Baensch, M., Bautsch, W., Klos, A., & Kohl, J. (1999). Analysis of the C5a anaphylatoxin core domain using a C5a phage library selected on differentiated U937 cells. Molecular Immunology, 36, 145–152.10.1016/S0161-5890(99)00019-X
  • Larkin, M. A., Blackshields, G., Brown, N. P., Chenna, R., McGettigan, P. A., McWilliam, H., … Higgins, D. G. (2007). Clustal W and clustal X version 2.0. Bioinformatics, 23, 2947–2948.10.1093/bioinformatics/btm404
  • Laskowski, R. A., Gerick, F., & Thornton, J. M. (2009). The structural basis of allosteric regulation in proteins. FEBS Letters, 583, 1692–1698.10.1016/j.febslet.2009.03.019
  • Lifson, S., & Roig, A. (1961). On the theory of helix – Coil transition in polypeptides. The Journal of Chemical Physics, 34, 1963–1974.10.1063/1.1731802
  • Liwang, A. C., Wang, Z. X., Sun, Y., Peiper, S. C., & Liwang, P. J. (1999). The solution structure of the anti-HIV chemokine vMIP-II. Protein Science, 8, 2270–2280.
  • Ma, B., Tsai, C. J., Haliloglu, T., & Nussinov, R. (2011). Dynamic allostery: Linkers are not merely flexible. Structure, 19, 907–917.10.1016/j.str.2011.06.002
  • Ma, J. C., & Dougherty, D. A. (1997). The cation-π interaction. Chemical Reviews, 97, 1303–1324.10.1021/cr9603744
  • Marquez-Curtis, L., Jalili, A., Deiteren, K., Shirvaikar, N., Lambeir, A. M., & Janowska-Wieczorek, A. (2008). Carboxypeptidase M expressed by human bone marrow cells cleaves the C-terminal lysine of stromal cell-derived factor-1α: Another player in hematopoietic stem/progenitor cell mobilization? Stem Cells, 26, 1211–1220.10.1634/stemcells.2007-0725
  • Marshall, M. S., Steele, R. P., Thanthiriwatte, K. S., & Sherrill, C. D. (2009). Potential energy curves for cation-π interactions: Off-axis configurations are also attractive. The Journal of Physical Chemistry A, 113, 13628–13632.10.1021/jp906086x
  • Mollison, K. W., Mandecki, W., Zuiderweg, E. R., Fayer, L., Fey, T. A., Krause, R. A., Conway, R. G., Miller, L., Edalji, R. P., Shallcross, M. A., Lane, B., Fox, J. L., Greer, J., & Carter, G. W. (1989). Identification of receptor-binding residues in the inflammatory complement protein C5a by site-directed mutagenesis. Proceedings of the National Academy of Sciences, 86, 292–296.10.1073/pnas.86.1.292
  • Moriconi, A., Cunha, T. M., Souza, G. R., Lopes, A. H., Cunha, F. Q., Carneiro, V. L., … Allegretti, M. (2014). Targeting the minor pocket of C5aR for the rational design of an oral allosteric inhibitor for inflammatory and neuropathic pain relief. Proceedings of the National Academy of Sciences, 111, 16937–16942.10.1073/pnas.1417365111
  • Motlagh, H. N., Wrabl, J. O., Li, J., & Hilser, V. J. (2014). The ensemble nature of allostery. Nature, 508, 331–339.10.1038/nature13001
  • Nooren, I. M., & Thornton, J. M. (2003). New EMBO member’s review: Diversity of protein–protein interactions. The EMBO Journal, 22, 3486–3492.10.1093/emboj/cdg359
  • Nussinov, R., & Tsai, C. J. (2013). Allostery in disease and in drug discovery. Cell, 153, 293–305.10.1016/j.cell.2013.03.034
  • Nussinov, R., Tsai, C. J., & Ma, B. (2013). The underappreciated role of allostery in the cellular network. Annual Review of Biophysics, 42, 169–189.10.1146/annurev-biophys-083012-130257
  • Plummer, T., & Hurwitz, M. (1978). Human plasma carboxypeptidase N. Isolation and characterization. Journal of Biological Chemistry, 253, 3907–3912.
  • Qin, L., Kufareva, I., Holden, L. G., Wang, C., Zheng, Y., Zhao, C., … Handel, T. M. (2015). Crystal structure of the chemokine receptor CXCR4 in complex with a viral chemokine. Science, 347, 1117–1122.10.1126/science.1261064
  • Ramachandran, G. N., & Sasisekharan, V. (1968). Conformation of polypeptides and proteins. Advances in Protein Chemistry, 23, 283–437.10.1016/S0065-3233(08)60402-7
  • Rana, S., & Sahoo, A. R. (2015). Model structures of inactive and peptide agonist bound C5aR: Insights into agonist binding, selectivity and activation. Biochemistry and Biophysics Reports, 1, 85–96.10.1016/j.bbrep.2015.03.002
  • Reis, E. S., Chen, H., Sfyroera, G., Monk, P. N., Kohl, J., Ricklin, D., & Lambris, J. D. (2012). C5a receptor-dependent cell activation by physiological concentrations of desarginated C5a: Insights from a novel label-free cellular assay. The Journal of Immunology, 189, 4797–4805.10.4049/jimmunol.1200834
  • Renfer, L., Frank, M. M., Hammer, C. H., Harvath, L., Lawley, T. J., & Yancey, K. B. (1986). A simplified method for purification of human C5a from citrated plasma. Journal of Immunological Methods, 88, 193–205.10.1016/0022-1759(86)90006-2
  • Schatz-Jakobsen, J. A., Yatime, L., Larsen, C., Petersen, S. V., Klos, A., & Andersen, G. R. (2014). Structural and functional characterization of human and murine C5a anaphylatoxins. Acta Crystallographica Section D Biological Crystallography, 70, 1704–1717.10.1107/S139900471400844X
  • Sinha, N., & Nussinov, R. (2001). Point mutations and sequence variability in proteins: Redistributions of preexisting populations. Proceedings of the National Academy of Sciences, 98, 3139–3144.10.1073/pnas.051399098
  • Skidgel, R. A., Stanisavljevic, S., & Erdos, E. G. (2006). Kinin- and angiotensin-converting enzyme (ACE) inhibitor-mediated nitric oxide production in endothelial cells. Biological Chemistry, 387, 159–165.
  • Swain, J. F., & Gierasch, L. M. (2006). The changing landscape of protein allostery. Current Opinion in Structural Biology, 16, 102–108.10.1016/j.sbi.2006.01.003
  • Tompa, P. (2012). Intrinsically disordered proteins: A 10-year recap. Trends in Biochemical Sciences, 37, 509–516.10.1016/j.tibs.2012.08.004
  • Toth, M. J., Huwyler, L., Boyar, W. C., Braunwalder, A. F., Yarwood, D., Hadala, J., … Galakatos, N. (1994). The pharmacophore of the human C5a anaphylatoxin. Protein Science, 3, 1159–1168.10.1002/pro.v3:8
  • Tsai, C. J., Del Sol, A., & Nussinov, R. (2009). Protein allostery, signal transmission and dynamics: A classification scheme of allosteric mechanisms. Molecular Biosystems, 5, 207–216.10.1039/b819720b
  • Tzeng, S. R., & Kalodimos, C. G. (2011). Protein dynamics and allostery: An NMR view. Current Opinion in Structural Biology, 21, 62–67.10.1016/j.sbi.2010.10.007
  • Uversky, V. N. (2013). Unusual biophysics of intrinsically disordered proteins. Biochimica et Biophysica Acta (BBA) – Proteins and Proteomics, 1834, 932–951.10.1016/j.bbapap.2012.12.008
  • Uversky, V. N., Oldfield, C. J., & Dunker, A. K. (2008). Intrinsically disordered proteins in human diseases: Introducing the D 2 concept. Annual Review of Biophysics, 37, 215–246.10.1146/annurev.biophys.37.032807.125924
  • Wang, C. I., & Lewis, R. J. (2013). Emerging opportunities for allosteric modulation of G-protein coupled receptors. Biochemical Pharmacology, 85, 153–162.10.1016/j.bcp.2012.09.001
  • Wenthur, C. J., Gentry, P. R., Mathews, T. P., & Lindsley, C. W. (2014). Drugs for allosteric sites on receptors. Annual Review of Pharmacology and Toxicology, 54, 165–184.10.1146/annurev-pharmtox-010611-134525
  • Wrabl, J. O., Gu, J., Liu, T., Schrank, T. P., Whitten, S. T., & Hilser, V. J. (2011). The role of protein conformational fluctuations in allostery, function, and evolution. Biophysical Chemistry, 159, 129–141.10.1016/j.bpc.2011.05.020
  • Xie, H., Vucetic, S., Iakoucheva, L. M., Oldfield, C. J., Dunker, A. K., Uversky, V. N., & Obradovic, Z. (2007). Functional anthology of intrinsic disorder. 1. Biological processes and functions of proteins with long disordered regions. Journal of Proteome Research, 6, 1882–1898.10.1021/pr060392u
  • Yao, S., Young, I. G., Norton, R. S., & Murphy, J. M. (2011). Murine interleukin-3: Structure, dynamics, and conformational heterogeneity in solution. Biochemistry, 50, 2464–2477.10.1021/bi101810f
  • Zhang, X., Boyar, W., Toth, M. J., Wennogle, L., & Gonnella, N. C. (1997). Structural definition of the C5a C terminus by two-dimensional nuclear magnetic resonance spectroscopy. Proteins: Structure, Function, and Genetics, 28, 261–267.10.1002/(ISSN)1097-0134
  • Zuiderweg, E. R., Nettesheim, D. G., Mollison, K. W., & Carter, G. W. (1989). Tertiary structure of human complement component C5a in solution from nuclear magnetic resonance data. Biochemistry, 28, 172–185.10.1021/bi00427a025

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.