571
Views
34
CrossRef citations to date
0
Altmetric
Original Articles

Molecular insight into amyloid oligomer destabilizing mechanism of flavonoid derivative 2-(4′ benzyloxyphenyl)-3-hydroxy-chromen-4-one through docking and molecular dynamics simulations

, , , , &
Pages 1252-1263 | Received 31 Dec 2014, Accepted 15 Jul 2015, Published online: 19 Oct 2015

References

  • Andujar, S. A., Lugli, F., Höfinger, S., Enriza, R. D., & Zerbetto, F. (2012). Amyloid-β oligomer disruption by C60 – Molecular guidance for rational drug design. Physical Chemistry Chemical Physics, 14, 8599–8607.
  • Autiero, I., Langella, E., & Saviano, M. (2013). Insights into the mechanism of interaction between trehalose-conjugated beta-sheet breaker peptides and Aβ(1-42) oligomers by molecular dynamics simulations. Molecular Biosystems, 9, 2835–2841.
  • Baptista, F. I., Henriques, A. G., Silva, A. M., Wiltfang, J., & da Cruz e Silva, O. A. (2014). Flavonoids as therapeutic compounds targeting key proteins involved in Alzheimer's disease. ACS Chemical Neuroscience, 5, 83–92.
  • Bastianetto, S., Krantic, S., & Quirion, R. (2008). Polyphenols as potential inhibitors of amyloid aggregation and toxicity: Possible significance to Alzheimer's disease. Mini Reviews Medicinal Chemistry, 8, 429–435.
  • Berendsen, H. J. C., Van der Spoel, D., & Drunen, R. V. (1995). GROMACS: A message-passing parallel molecular dynamics implementation. Computer Physics Communications, 91, 43–56.
  • Berhanu, W. M., & Masunov, A. E. (2010). Natural polyphenols as inhibitors of amyloid aggregation: Molecular dynamics study of GNNQQNY heptapeptide decamer. Biophysical Chemistry, 149, 12–21.
  • Berhanu, W. M., & Masunov, A. E. (2011). Can molecular dynamics simulations assist in design of specific inhibitors and imaging agents of amyloid aggregation? Structure, stability and free energy predictions for amyloid oligomers of VQIVYK, MVGGVV and LYQLEN. Journal of Molecular Modeling, 17, 2423–2442.
  • Berhanu, W. M., & Masunov, A. E. (2014a). Full length amylin oligomer aggregation: insights from molecular dynamics simulations and implications for design of aggregation inhibitors. Journal of Biomolecular Structure Dynamics, 32, 1651–1669.
  • Berhanu, W. M., & Masunov, A. E. (2014b). The atomic level interaction of polyphenols with the Aβ oligomer aggregate, a molecular dynamic guidance for rational drug design. In R. R. Watson, V. R. Preedy, & S. Zibadi (Eds.), Polyphenols in Human Health and Disease (pp. 59–70). San Diego, CA: Academic Press, Elsevier.
  • Biancalana, M., Makabe, K., Koide, A., & Koide, S. (2009). Molecular mechanism of thioflavin-T binding to the surface of beta-rich peptide self-assemblies. Journal of Molecular Biology, 385, 1052–1063.
  • Choi, Y., Kim, T. D., Paik, S. R., Jeong, K., & Jung, S. (2008). Molecular simulations for anti-amyloidogenic effect of flavonoid myricetin exerted against Alzheimer’s β-amyloid oligomers formation. Bulletin of the Korean Chemical Society, 29, 1505–1509.
  • Claus, P., & Behl, C. (2005). Concepts for the treatment of Alzheimer’s disease: Molecular mechanisms and clinical application. Int J Exp Pathol, 86, 173–185.
  • Davis, C. H., & Berkowitz, M. L. (2009). Interaction between amyloid-β (1–42) peptide and phospholipid bilayers: A molecular dynamics study. Biophysical Journal, 96, 785–797.
  • Esler, W. P., Stimson, E. R., Ghilardi, J. R., Lu, Y. A., Felix, A. M., Vinters, H. V., … Maggio, J. E. (1996). Point substation in the central hydrophobic cluster of a human beta amyloid congener disrupts peptide folding and abolishes plaque competence. Biochemistry, 35, 13914–13921.
  • Ghatty, V. P. K., & Mostofian, B. (2013). Dynamics of water in the amphiphilic pore of amyloid β oligomers. Chemical Physics Letters, 582(2), 1–5.
  • Hanwell, M. D., Curtis, D. E., Lonie, D. C., Vandermeersch, T., Zurek, E., & Hutchison, G. R. (2012). Avogadro: An advanced semantic chemical editor, visualization, and analysis platform. Journal of Cheminformatics, 4, 17–32.
  • Hardy, J. A., & Higgins, G. A. (1992). Alzheimer's disease: The amyloid cascade hypothesis. Science, 256, 184–185.
  • Hardy, J., & Selkoe, D. J. (2002). The amyloid hypothesis of Alzheimer's disease: Progress and problems on the road to therapeutics. Science, 297, 353–356.
  • Harper, J. D., & Lansbury, P. T., Jr. (1997). Models of amyloid seeding in Alzheimer's disease and scrapie: Mechanistic truths and physiological consequences of the time-dependent solubility of amyloid proteins. Annual Review of Biochemistry, 66, 385–407.
  • Hikari, I. W., Kamihira-I, M., Javkhlantugs, N., Inoue, R., Yuki, I, Endo, H., … Naito, A. (2013). Role of aromatic residues in amyloid oligomer formation of human calcitonin by solid-state 13C NMR and molecular dynamics simulation. Physical Chemistry Chemical Physics, 15, 8890–8901.
  • Hilbich, C., Kisters-Woike, B., Masters, C. L., & Beyruether, K. (1992). Substitution of hydrophobic amino acid reduces the amylodogenicity of Alzheimer’s disease beta A4 peptides. Journal of Molecular Biology, 219, 460–473.
  • Huy, P. D., Yu, Y. C., Ngo, S. T., Thao, T. V., Chen, C. P., Li, M. S., & Chen, Y. C. (2013). Insilico and Invitro characterization of anti-amyloidogenic activity of vitamin K3 analogues for Alzheimer's disease. Biochim et Biophysica Acta, 1830, 2960–2969.
  • Kollman, P. A., Massova, I., Reyes, C., Kuhn, B., Huo, S., Chong, L., & Cheatham, T. E. (2000). Calculating structures and free energies of complex molecules: Combining molecular mechanics and continuum models. Accounts of Chemical Research, 33, 889–897.
  • Kumari, R., Kumar, R., & Lynn, A. (2014). g_mmpbsa – A GROMACS tool for high-throughput MM-PBSA Calculations. Journal of Chemical Information and Modeling, 54, 1951–1962.
  • Lemkul, A. J., & Bevan, D. R. (2010). Destabilizing Alzheimer’s Aβ42 protooligomers with morin: Mechanistic insights from molecular dynamics simulations. Biochemistry, 49, 3935–3946.
  • LeVine, H., 3rd. (2005). Multiple ligand binding sites on A beta(1–40) oligomers. Amyloid, 12, 5–14.
  • Lindahl, E., Hess, B., & Van der Spoel, D. (2001). GROMACS 3.0: A package for molecular simulation and trajectory analysis. Journal of Molecular Modelling, 7, 306–317.
  • Lockhart, A., Ye, L., Judd, D. B., Merritt, A. T., Lowe, P. N., Morgenstern, J. L., … Brown, J. (2005). Evidence for the presence of three distinct binding sites for the thioflavin T class of Alzheimer's disease PET imaging agents on beta-amyloid peptide oligomers. Journal of Biological Chemistry, 280, 7677–7684.
  • Lührs, T., Ritter, C., Adrian, M., Riek-Loher, D., Bohrmann, B., Döbeli, H., … Riek, R. (2005). 3D structure of Alzheimer's amyloid-beta(1–42) oligomers. Proceedings of the National Academy of Sciences of the United States of America, 102, 17342–17347.
  • Medina-Franco, J. L., López-Vallejo, F., Kuck, D., & Lyko, F. (2011). Natural products as DNA methyltransferase inhibitors: A computer-aided discovery approach. Molecular Diversity, 15(2), 1–12.
  • Meng, X., Munishkina, L. A., Fink, A. L., & Uversky, V. N. (2009). Molecular mechanisms underlying the flavonoid-induced inhibition of alpha-synuclein oligomerlation. Biochemistry, 48, 8206–8224.
  • Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., & Olson, A. J. (2009). Autodock4 and AutoDockTools4: Automated docking with selective receptor flexiblity. Journal of Computational Chemistry, 16, 2785–2791.
  • O'Boyle, N. M., Banck, M., James, C. A., Morley, C. A., Morley, C., Vandermeersch, T., & Hutchison, G.R. (2011). Open Babel: An open chemical toolbox. Journal of Cheminformatics, 3, 33.
  • Porat, Y., Abramowitz, A., & Gazit, E. (2006). Inhibition of amyloid oligomer formation by polyphenols: Structural similarity and aromatic interactions as a common inhibition mechanism. Chemical Biology and Drug Design, 67, 27–37.
  • Reddy, G., Straub, J. E., & Thirumalai, D. (2009). Influence of preformed Asp23-Lys28 salt bridge on the conformational fluctuations of monomers and dimers of Abeta peptides with implications for rates of oligomer formation. Journal of Physical Chemistry B, 113, 1162–1172.
  • Richard, T., Papastamoulis, Y., Waffo-Teguo, P., & Monti, J. P. (2013). 3D NMR structure of a complex between the amyloid beta peptide (1–40) and the polyphenol ε-viniferin glucoside: Implications in Alzheimer's disease. Biochimica et Biophysica Acta, 1830, 5068–5074.
  • Rodríguez-Rodríguez, C., Rimola, A., Rodríguez-Santiago, L., Ugliengo, P., Alvarez-Larena, A., Gutiérrez-de-Terán, H., … González-Duarte, P. (2010). Crystal structure of thioflavin-T and its binding to amyloid oligomers insights at the molecular level. Chemical Communications, 46, 1156–1158.
  • Schüttelkopf, A. W., & VanAalten, D. M. F. (2004). PRODRG-a tool for high-throughput crystallography of protein–ligand complexes. Acta Crystallographica D, 60, 1355–1363.
  • Singh, S. K., Gaur, R., Kumar, A., Fatima, R., Mishra, L., & Srikrishna, S. (2014). The flavonoid derivative 2-(4′ Benzyloxyphenyl)-3-hydroxy-chromen-4-one protects against Aβ42-induced neurodegeneration in transgenic Drosophila: Insights from in silico and in vivo studies. Neurotoxicity Research, 26, 331–350.
  • Takeda, T., Chang, W. E., Raman, E. P., & Klimov, D. K. (2010). Binding of non-steroidal anti-inflammatory drugs to Aβ oligomer. Proteins, 78, 2849–2860.
  • Thies, W., & Bleiler, L. (2013). Report Alzheimer disease facts and figures. Alzheimer’s Dement, 9, 208–245.
  • Verma, S., Singh, A., & Mishra, A. (2013). The effect of fulvic acid on pre- and postaggregation state of Aβ(17-42): Molecular dynamics simulation studies. Biochimica et Biophysica Acta, 1834, 24–33.
  • Wu, C., Wang, Z., Lei, H., Zhang, W., & Duan, Y. (2007). Dual binding modes of Congo red to amyloid protooligomer surface observed in molecular dynamics simulations. Journal of the American Chemical Society, 129, 1225–1232.
  • Wu, C., Wang, Z., Lei, H., Duan, Y., Bowers, M. T., & Shea, J. E. (2008). The binding of thioflavin T and its neutral analog BTA-1 to protooligomers of the Alzheimer's disease Abeta(16–22) peptide probed by molecular dynamics simulations. Journal of Molecular Biology, 384, 718–729.
  • Yang, C., Zhu, X., Li, J., & Shi, R. (2010). Exploration of the mechanism for LPFFD inhibiting the formation of β-sheet conformation of Aβ(1–42) in water. Journal of Molecular Modeling, 16, 813–821.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.