147
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Hydrogen bonds in Zif268 proteins – a theoretical perspective

&
Pages 1607-1624 | Received 28 May 2015, Accepted 18 Aug 2015, Published online: 20 Oct 2015

References

  • Berhanu, W. M., & Hansmann, U. H. E. (2012). Structure and dynamics of amyloid-β segmental polymorphisms. PLoS One, 7, e41479. doi:10.1371/journal.pone.0041479
  • Besold, A. N., Amick, D. L., & Michel, S. L. J. (2014). A role for hydrogen bonding in DNA recognition by the non-classical CCHHC type zinc finger, NZF-1. Molecular BioSystems, 10, 1753–1756. doi:10.1039/c4mb00246f
  • Brovarets’, O. O., & Hovorun, D. M. (2010a). How stable are the mutagenic tautomers of DNA bases? Biopolymer and Cell, 26, 72–76. doi:10.7124/bc.000147
  • Brovarets’, O. O., & Hovorun, D. M. (2010b). Stability of mutagenic tautomers of uracil and its halogen derivatives: The results of quantum-mechanical investigation. Biopolymer and Cell, 26, 295–298. doi:10.7124/bc.000162
  • Brovarets’, O. O., & Hovorun, D. M. (2013a). Why the tautomerization of the G•C Watson-Crick base pair via the DPT does not cause point mutations during DNA replication? QM and QTAIM comprehensive analysis. Journal of Biomolecular Structure and Dynamics, 32, 1474–1499. doi:10.1080/07391102.2013.822829
  • Brovarets’, O. O., & Hovorun, D. M. (2013b). Atomistic nature of the DPT tautomerisation of the biologically important C[….]C* DNA base mispair containing amino and imino tautomers of cytosine: A QM and QTAIM approach. Physical Chemistry Chemical Physics, 15, 20091–20104. doi:10.1039/c3cp52644e
  • Brovarets’, O. O., & Hovorun, D. M. (2013c). Atomistic understanding of the C•T mismatched DNA base pair tautomerization via the DPT: QM and QTAIM computational approaches. Journal of Computational Chemistry, 34, 2577–2590. doi:10.1002/jcc.23412
  • Brovarets’, O. O., & Hovorun, D. M. (2013d). The physicochemical essence of the purine•pyrimidine transition mismatches with Watson-Crick geometry in DNA: A•C* versa A*•C. A QM and QTAIM atomistic understanding. Journal of Biomolecular Structure and Dynamics, 33, 28–55. doi:10.1080/07391102.2013.852133
  • Brovarets’, O. O., & Hovorun, D. M. (2013e). Can tautomerization of the A•T Watson-Crick base pair via double proton transfer provoke point mutations during DNA replication? A comprehensive QM and QTAIM analysis. Journal of Biomolecular Structure and Dynamics, 32, 127–154. doi:10.1080/07391102.2012.755795
  • Brovarets’, O. O., & Hovorun, D. M. (2014b). The nature of the transition mismatches with Watson-Crick architecture: The G*·T or G·T* DNA base mispair or both? A QM/QTAIM perspective for the biological problem. Journal of Biomolecular Structure and Dynamics, 33, 925–945. doi:10.1080/07391102.2014.924879
  • Brovarets’, O. O., & Hovorun, D. M. (2015). How many tautomerization pathways connect Watson–Crick-like G*•T DNA base mispair and wobble mismatches? Journal of Biomolecular Structure and Dynamics, 32, 1–19. doi:10.1080/07391102.2015.1046936
  • Brovarets’, O. O., Yurenko, Y. P., & Hovorun, D. M. (2013). Intermolecular CH•••O/N H-bonds in the biologically important pairs of natural nucleobases: A thorough quantum-chemical study. Journal of Biomolecular Structure and Dynamics, 6, 993–1022. doi:10.1080/07391102.2013.799439
  • Brovarets’, O. O., Yurenko, Y. P., & Hovorun, D. M. (2014a). The significant role of the intermolecular CH⋯O/N hydrogen bonds in governing the biologically important pairs of the DNA and RNA modified bases: A comprehensive theoretical investigation. Journal of Biomolecular Structure and Dynamics, 33, 1624–1652. doi:10.1080/07391102.2014.968623
  • Brovarets’, O. O., Zhurakivsky, R., & Hovorun, D. (2013a). The physico-chemical “anatomy” of the tautomerization through the DPT of the biologically important pairs of hypoxanthine with DNA bases: QM and QTAIM perspectives. Journal of Molecular Modeling, 19, 4119–4137. doi:10.1007/s00894-012-1720-9
  • Brovarets’, O. O., Zhurakivsky, R., & Hovorun, D. (2013b). DPT tautomerization of the long A∙A* Watson-Crick base pair formed by the amino and imino tautomers of adenine: Combined QM and QTAIM investigation. Journal of Molecular Modeling, 19, 4223–4237. doi:10.1007/s00894-013-1880-2
  • Brovarets’, O. O., Zhurakivsky, R. O., & Hovorun, D. M. (2013c). The physico-chemical mechanism of the tautomerisation via the DPT of the long Hyp∗•Hyp Watson-Crick base pair containing rare tautomer: A QM and QTAIM detailed look. Chemical Physics Letters, 578, 126–132. doi:10.1007/s00894-012-1720-9
  • Brovarets’, O. O., Zhurakivsky, R. O., & Hovorun, D. M. (2014c). DPT tautomerisation of the wobble guanine•thymine DNA base mispair is not mutagenic: QM and QTAIM arguments. Journal of Biomolecular Structure and Dynamics, 3, 674–689. doi:10.1080/07391102.2014.897259
  • Brovarets’, O. O., Zhurakivsky, R. O., & Hovorun, D. M. (2014d). Does the tautomeric status of the adenine bases change upon the dissociation of the A*.Asyn Topal-Fresco DNA mismatch? A combined QM and QTAIM atomistic insight. Physical Chemistry Chemical Physics, 16, 3715–3725. doi:10.1039/C3CP54708F
  • Darden, T., York, D., & Pedersen, L. (1993). Particle mesh Ewald: An N⋅log(N) method for Ewald sums in large systems. The Journal of Chemical Physics, 98, 10089–10092. doi:10.1063/1.464397
  • Ding, F., Furukawa, Y., Nukina, N., & Dokholyan, N. V. (2012). Local unfolding of Cu, Zn superoxide dismutase monomer determines the morphology of fibrillar aggregates. Journal of Molecular Biology, 421, 548–560. doi:10.1016/j.jmb.2011.12.029
  • Duff, M. R., Jr., Fyvie, W. S., Markad, S. D., Frankel, A. E., Kumar, C. V., Gascon, J. A., & Peczuh, M. W. (2011). Computational and experimental investigations of mono-septanoside binding by Concanavalin A: Correlation of ligand stereochemistry to enthalpies of binding. Organic & Biomolecular Chemistry, 9, 154–164. doi:10.1039/c0ob00425a
  • Elrod-Erickson, M., Benson, T. E., & Pabo, C. O. (1998). High-resolution structures of variant Zif268–DNA complexes: Implications for understanding zinc finger–DNA recognition. Structure, 6, 451–464. doi:10.1016/S0969-2126(98)00047-1
  • Essmann, U., Perera, L., Berkowitz, M. L., Darden, T., Lee, H., & Pedersen, L. G. (1995). A smooth particle mesh Ewald method. The Journal of Chemical Physics, 103, 8577–8593. doi:10.1063/1.470117
  • Fleming, P. J., Gong, H., & Rose, G. D. (2006). Secondary structure determines protein topology. Protein Science, 15, 1829–1834. doi:10.1110/ps.062305106
  • Foster, J. P., & Weinhold, F. (1980). Natural hybrid orbitals. Journal of the American Chemical Society, 102, 7211–7218. doi:10.1021/ja00544a007
  • Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., … Fox, D. J. (2009). Gaussian 09. Wallingford, CT: Gaussian.
  • Fukushima, K., Wada, M., & Sakurai, M. (2008). An insight into the general relationship between the three dimensional structures of enzymes and their electronic wave functions: Implication for the prediction of functional sites of enzymes. Proteins: Structure, Function, and Bioinformatics, 71, 1940–1954. doi:10.1002/prot.21865
  • Furmanchuk, A., Isayev, O., Gorb, L., Shishkin, O. V., Hovorun, D. M., & Leszczynski, J. (2011). Novel view on the mechanism of water-assisted proton transfer in the DNA bases: Bulk water hydration. Physical Chemistry Chemical Physics, 13, 4311–4317. doi:10.1039/c0cp02177f
  • Hess, B., Bekker, H., Berendsen, H. J. C., & Fraaije, J. G. E. M. (1997). LINCS: A linear constraint solver for molecular simulations. Journal of Computational Chemistry, 18, 1463–1472. doi:10.1002/(SICI)1096-9888(199904)34:4
  • Hess, B., Kutzner, C., van der Spoel, D., & Lindahl, E. (2008). GROMACS 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation. Journal of Chemical Theory and Computation, 4, 435–447. doi:10.1021/ct700301q
  • Hoover, W. G. (1985). Canonical dynamics: Equilibrium phase-space distributions. Physical Review A, 31, 1695–1697. doi:10.1103/PhysRevA.31.1695
  • Humphrey, W., Dalke, A., & Schulten, K. (1996). VMD: Visual molecular dynamics. Journal of Molecular Graphics, 14, 33–38. doi:10.1016/0263-7855(96)00018-5
  • Jen-Jacobson, L. (1997). Protein-DNA recognition complexes: Conservation of structure and binding energy in the transition state. Biopolymers, 44, 153–180. doi:10.1002/(SICI)1097-0282(1997)44:2
  • Jones, S., van Heyningen, P., Berman, H. M., & Thornton, J. M. (1999). Protein-DNA interactions: A structural analysis1. Journal of Molecular Biology, 287, 877–896. doi:10.1006/jmbi.1999.2659
  • Karthika, M., Kanakaraju, R., & Senthilkumar, L. (2013). Spectroscopic investigations and hydrogen bond interactions of 8-aza analogues of xanthine, theophylline and caffeine: A theoretical study. Journal of Molecular Modeling, 19, 1835–1851. doi:10.1007/s00894-012-1742-3
  • Karthika, M., Senthilkumar, L., & Kanakaraju, R. (2012a). Theoretical investigations on hydrated 6,8-dithioguanine tautomers. Structural Chemistry, 23, 1203–1218. doi:10.1007/s11224-012-9946-9
  • Karthika, M., Senthilkumar, L., & Kanakaraju, R. (2012b). Theoretical studies on hydrogen bonding in caffeine–theophylline complexes. Computational and Theoretical Chemistry, 979, 54–63. doi:10.1016/j.comptc.2011.10.015
  • Kony, D. B., Hünenberger, P. H., & van Gunsteren, W. F. (2007). Molecular dynamics simulations of the native and partially folded states of ubiquitin: Influence of methanol cosolvent, pH, and temperature on the protein structure and dynamics. Protein Science, 16, 1101–1118. doi:10.1110/ps.062323407
  • Koopmans, T. (1934). Über die Zuordnung von Wellenfunktionen und Eigenwerten zu den Einzelnen Elektronen Eines Atoms [By assigning wave functions and eigen values to the individual electrons of an atom]. Physica, 1, 104–113. doi:10.1016/S0031-8914(34)90011-2
  • Luscombe, N. M., & Thornton, J. M. (2002). Protein–DNA interactions: Amino acid conservation and the effects of mutations on binding specificity. Journal of Molecular Biology, 320, 991–1009. doi:10.1016/S0022-2836(02)00571-5
  • Mandel-Gutfreund, Y., & Margalit, H. (1998). Quantitative parameters for amino acid-base interaction: Implications for prediction of protein-DNA binding sites. Nucleic Acids Research, 26, 2306–2312. doi:10.1093/nar/26.10.2306
  • Mandel-Gutfreund, Y., Margalit, H., Jernigan, R. L., & Zhurkin, V. B. (1998). A role for CH…O interactions in protein-DNA recognition. Journal of Molecular Biology, 277, 1129–1140. doi:10.1006/jmbi.1998.1660
  • Mandel-Gutfreund, Y., Schueler, O., & Margalit, H. (1995). Comprehensive analysis of hydrogen bonds in regulatory protein DNA-complexes. In search of common principles. Journal of Molecular Biology, 253, 370–382. doi:10.1006/jmbi.1995.0559
  • Murphy, R. B., Philipp, D. M., & Friesner, R. A. (2000). A mixed quantum mechanics/molecular mechanics (QM/MM) method for large-scale modeling of chemistry in protein environments. Journal of Computational Chemistry, 21, 1442–1457. doi:10.1002/1096-987X(200012)21:16
  • Nadassy, K., Wodak, S. J., & Janin, J. (1999). Structural features of protein−nucleic acid recognition sites. Biochemistry, 38, 1999–2017. doi:10.1021/bi982362d
  • Nagy, G., Gyurcsik, B., Hoffmann, E. A., & Körtvélyesi, T. (2011). Theoretical design of a specific DNA–Zinc-finger protein interaction with semi-empirical quantum chemical methods. Journal of Molecular Graphics and Modelling, 29, 928–934. doi:10.1016/j.jmgm.2011.03.002
  • Nicholas, M., Luscombe, R. A. L., & Thornton, J. M. (2001). Amino acid–base interactions: A three-dimensional analysis of protein–DNA interactions at an atomic level. Nucleic Acids Research, 29, 2860–2874. doi:10.1093/nar/29.13.2860
  • Nosé, S. (1984). A molecular dynamics method for simulations in the canonical ensemble. Molecular Physics, 52, 255–268. doi:10.1080/00268978400101201
  • Nosé, S., & Klein, M. L. (1983). Constant pressure molecular dynamics for molecular systems. Molecular Physics, 50, 1055–1076. doi:10.1080/00268978300102851
  • Pardo, L., Campillo, M., Bosch, D., Pastor, N., & Weinstein, H. (2000). Binding mechanisms of TATA box-binding proteins: DNA kinking is stabilized by specific hydrogen bonds. Biophysical Journal, 78, 1988–1996. doi:10.1016/S0006-3495(00)76746-4
  • Parr, R. G., Yang, W. (1989). Density-functional theory of atoms and molecules. New York, NY: Oxford University Press.
  • Parrinello, M., & Rahman, A. (1981). Polymorphic transitions in single crystals: A new molecular dynamics method. Journal of Applied Physics, 52, 7182–7190. doi:10.1063/1.328693
  • Philipp, D. M., & Friesner, R. A. (1999). Mixed ab initio QM/MM modeling using frozen orbitals and tests with alanine dipeptide and tetrapeptide. Journal of Computational Chemistry, 20, 1468–1494. doi:10.1002/(SICI)1096-987X(19991115)20:14<1468
  • Priya, A. M., Senthilkumar, L., & Kolandaivel, P. (2014). Hydrogen-bonded complexes of serotonin with methanol and ethanol: A DFT study. Structural Chemistry, 25, 139–157. doi:10.1007/s11224-013-0260-y
  • Raevsky, O. A., & Skvortsov, V. S. (2005). Quantifying hydrogen bonding in QSAR and molecular modeling. SAR and QSAR in Environmental Research, 16, 287–300. doi:10.1080/10659360500036893
  • Reddy, C. K., Das, A., & Jayaram, B. (2001). Do water molecules mediate protein-DNA recognition? Journal of Molecular Biology, 314, 619–632. doi:10.1006/jmbi.2001.5154
  • Rohs, R., West, S. M., Sosinsky, A., Liu, P., Mann, R. S., & Honig, B. (2009). The role of DNA shape in protein-DNA recognition. Nature, 461, 1248–1253. doi:10.1038/nature08473
  • Roy, S., Dutta, S., Khanna, K., Singla, S., & Sundar, D. (2012). Prediction of DNA-binding specificity in zinc finger proteins. Journal of Biosciences, 37, 483–491. doi:10.1007/s12038-012-9213-7
  • Samijlenko, S. P., Yurenko, Y. P., Stepanyugin, A. V., & Hovorun, D. M. (2010). Tautomeric Equilibrium of Uracil and Thymine in Model Protein−Nucleic Acid Contacts. Spectroscopic and Quantum Chemical Approach, Journal of Physical Chemistry B, 114, 1454–1456.
  • Senthilkumar, L., Ghanty, T. K., & Ghosh, S. K. (2005). Electron density and energy decomposition analysis in hydrogen-bonded complexes of azabenzenes with water, acetamide, and thioacetamide. The Journal of Physical Chemistry A, 109, 7575–7582. doi:10.1021/jp052304j
  • Senthilkumar, L., Ghanty, T. K., Ghosh, S. K., & Kolandaivel, P. (2006). Hydrogen bonding in substituted formic acid dimers. The Journal of Physical Chemistry A, 110, 12623–12628. doi:10.1021/jp061285q
  • Senthilkumar, L., Ghanty, T. K., Kolandaivel, P., & Ghosh, S. K. (2012). Hydrogen-bonded complexes of nicotine with simple alcohols. International Journal of Quantum Chemistry, 112, 2787–2793. doi:10.1002/qua.23304
  • Senthilkumar, L., & Kolandaivel, P. (2005). Study of effective hardness and condensed Fukui functions using AIM, ab initio, and DFT methods. Molecular Physics, 103, 547–556. doi:10.1080/00268970412331319218
  • Senthilkumar, L., Umadevi, P., Nithya, K., & Kolandaivel, P. (2013). Density functional theory investigation of cocaine water complexes. Journal of Molecular Modeling, 19, 3411–3425. doi:10.1007/s00894-013-1866-0
  • Suzuki, M., Kinok, K., Morikawa, M., Kobayashi, T., Komori, R., & Miyazawa, H. (2012). Calculation of the stabilization energies of oxidatively damaged guanine base pairs with guanine. Molecules, 17, 6705–15. doi:10.3390/molecules17066705.
  • Suzuki, M. (1994). A framework for the DNA–protein recognition code of the probe helix in transcription factors: The chemical and stereochemical rules. Structure, 2, 317–326. doi:10.1016/S0969-2126(00)00033-2
  • Torella, R., Moroni, E., Caselle, M., Morra, G., & Colombo, G. (2010). Investigating dynamic and energetic determinants of protein nucleic acid recognition: Analysis of the zinc finger zif268-DNA complexes. BMC Structural Biology, 10, 1–18 doi:10.1186/1472-6807-10-42
  • Umadevi, V., Senthilkumar, L., & Kolandaivel, P. (2013). Theoretical investigations on the hydrogen bonding of nitrile isomers with H2O, HF, NH3 and H2S. Molecular Simulation, 39, 908–921. doi:10.1080/08927022.2013.777840
  • van Gunsteren W. F., Billeter, S. R., Eising, A. A., H¨unenberger, P. H., Kr¨uger, P., Mark, A. E., … Tironi, I. G. (1996). Biomolecular simulation: The GROMOS96 manual and user guide. Z¨urich: Hochschulverlag AG an der ETH Z¨urich.
  • Werner, M. H., Gronenborn, A. M., & Clore, G. M. (1996). Intercalation, DNA kinking, and the control of transcription. Science, 271, 778–784. doi:10.1126/science.271.5250.778
  • Wiberg, K. B. (2004). Basis set effects on calculated geometries: 6-311++G** vs. aug-cc-pVDZ. Journal of Computational Chemistry, 25, 1342–1346. doi:10.1002/jcc.20058
  • Yang, B., Zhu, Y., Wang, Y., & Chen, G. (2011). Interaction identification of Zif268 and TATAZF proteins with GC-/AT-rich DNA sequence: A theoretical study. Journal of Computational Chemistry, 32, 416–428. doi:10.1002/jcc.21630
  • Yurenko, Y. P., Zhurakivsky, R. O., Samijlenko, S. P., & Hovorun, D. M. (2011). Intramolecular CH…O hydrogen bonds in the AI and BI DNA-like conformers of canonical nucleosides and their Watson-Crick pairs. Quantum chemical and AIM analysis. Journal of Biomolecular Structure and Dynamics, 29, 51–65. doi:10.1080/07391102.2011.10507374

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.