395
Views
12
CrossRef citations to date
0
Altmetric
Research Articles

Protein–protein interactions between SWCNT/chitosan/EGF and EGF receptor: a model of drug delivery system

, , &
Pages 1919-1929 | Received 18 Jun 2015, Accepted 14 Sep 2015, Published online: 06 Jan 2016

References

  • Accelrys Software Inc. (2013). D. S. M. E., release 4.0. San Diego, CA: Author.
  • Acharya, S., Dilnawaz, F., & Sahoo, S. K. (2009). Targeted epidermal growth factor receptor nanoparticle bioconjugates for breast cancer therapy. Biomaterials, 30, 5737–5750. doi:10.1016/j.biomaterials.2009.07.008
  • Arsawang, U., Saengsawang, O., Rungrotmongkol, T., Sornmee, P., Wittayanarakul, K., Remsungnen, T., & Hannongbua, S. (2011). How do carbon nanotubes serve as carriers for gemcitabine transport in a drug delivery system? Journal of Molecular Graphics and Modelling, 29, 591–596. doi:10.1016/j.jmgm.2010.11.002
  • Bhirde, A. A., Patel, V., Gavard, J., Zhang, G. F., Sousa, A. A., Masedunskas, A., Rusling, J. F. (2009). Targeted killing of cancer cells in vivo and in vitro with EGF-directed carbon nanotube-based drug delivery. ACS Nano, 3, 307–316. doi:10.1021/nn800551s.
  • Bianco, A., Kostarelos, K., & Prato, M. (2005). Applications of carbon nanotubes in drug delivery. Current Opinion in Chemical Biology, 9, 674–679. doi:10.1016/j.cbpa.2005.10.005
  • Björkelund, H., Gedda, L., Malmqvist, M., & Andersson, K. (2013). Resolving the EGF-EGFR interaction characteristics through a multiple-temperature, multiple-inhibitor, real-time interaction analysis approach. Molecular and Clinical Oncology, 1, 343–352. doi:10.3892/mco.2012.37
  • Burgess, A. W., Cho, H.-S., Eigenbrot, C., Ferguson, K. M., Garrett, T. P. J., Leahy, D. J., … Yokoyama, S. (2003). An open-and-shut case? Recent insights into the activation of EGF/ErbB receptors. Molecular Cell, 12, 541–552. doi:10.1016/S1097-2765(03)00350-2
  • Case, D. A., Darden, T. A., Cheatham, T. E., Simmerling, C. L., Wang, J., Duke, R. E., … Kollman, P. A. (2008). AMBER (Version 10). University of California: San Francisco.
  • Chaban, V. V., Savchenko, T. I., Kovalenko, S. M., & Prezhdo, O. V. (2010). Heat-driven release of a drug molecule from carbon nanotubes: a molecular dynamics study. The Journal of Physical Chemistry B, 114, 13481–13486. doi:10.1021/jp104507 g
  • Chen, X., Chen, H., Tripisciano, C., Jedrzejewska, A., Rümmeli, M. H., Klingeler, R., … Borowiak-Palen, E. (2011). Carbon-nanotube-based stimuli-responsive controlled-release system. Chemistry – A European Journal, 17, 4454–4459. doi:10.1002/chem.201003355
  • Cheng, C., Xiao-Xia, X., Qian, Z., Feng-Yi, Z., Qiao-Ling, W., Ya-Qing, L., … Shu-Qin, Y. (2012). EGF-functionalized single-walled carbon nanotubes for targeting delivery of etoposide. Nanotechnology, 23, 045104. doi:10.1088/0957-4484/23/4/045104
  • Corkery, B., Crown, J., Clynes, M., & O’Donovan, N. (2009). Epidermal growth factor receptor as a potential therapeutic target in triple-negative breast cancer. Annals of Oncology, 20, 862–867. doi:10.1093/annonc/mdn710
  • Dawson, J. P., Berger, M. B., Lin, C.-C., Schlessinger, J., Lemmon, M. A., & Ferguson, K. M. (2005). Epidermal growth factor receptor dimerization and activation require ligand-induced conformational changes in the dimer interface. Molecular and Cellular Biology, 25, 7734–7742. doi:10.1128/mcb.25.17.7734-7742.2005
  • Duan, Y., Wu, C., Chowdhury, S., Lee, M. C., Xiong, G., Zhang, W., … Kollman, P. (2003). A point-charge force field for molecular mechanics simulations of proteins based on condensed-phase quantum mechanical calculations. Journal of Computational Chemistry, 24, 1999–2012. doi:10.1002/jcc.10349
  • Essmann, U., Perera, L., Berkowitz, M., Darden, T., Lee, H., & Pedersen, L. (1995). A smooth particle mesh Ewald method. The Journal of Chemical Physics, 103, 8577–8593. doi:10.1002/1096-987X(200010)21::13<1187:AID-JCC7>3.0.CO;2-7
  • Ferguson, K. M., Berger, M. B., Mendrola, J. M., Cho, H.-S., Leahy, D. J., & Lemmon, M. A. (2003). EGF activates its receptor by removing interactions that autoinhibit ectodomain dimerization. Molecular Cell, 11, 507–517. doi:10.1016/S1097-2765(03)00047-9
  • Garrett, T. P. J., Burgess, A. W., Gan, H. K., Luwor, R. B., Cartwright, G., Walker, F., … Johns, T. G. (2009). Antibodies specifically targeting a locally misfolded region of tumor associated EGFR. Proceedings of the National Academy of Sciences, 106, 5082–5087. doi:10.1073/pnas.0811559106
  • Gohlke, H., Kiel, C., & Case, D. A. (2003). Insights into protein–protein binding by binding free energy calculation and free energy decomposition for the Ras-Raf and Ras–RalGDS complexes. Journal of Molecular Biology, 330, 891–913. doi:10.1016/S0022-2836(03)00610-7
  • Hashida, Y., Tanaka, H., Zhou, S., Kawakami, S., Yamashita, F., Murakami, T., … Hashida, M. (2014). Photothermal ablation of tumor cells using a single-walled carbon nanotube–peptide composite. Journal of Controlled Release, 173, 59–66. doi:10.1016/j.jconrel.2013.10.039
  • Homeyer, N., & Gohlke, H. (2012). Free energy calculations by the molecular mechanics Poisson−Boltzmann surface area method. Molecular Informatics, 31, 114–122. doi:10.1002/minf.201100135
  • Hou, T., Wang, J., Li, Y., & Wang, W. (2010). Assessing the performance of the MM/PBSA and MM/GBSA methods. 1. The accuracy of binding free energy calculations based on molecular dynamics simulations. Journal of Chemical Information and Modeling, 51, 69–82. doi:10.1021/ci100275a
  • Hun, X., & Zhang, Z. (2009). Anti-epidermal growth factor receptor (anti-EGFR) antibody conjugated fluorescent nanoparticles probe for breast cancer imaging. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 74, 410–414. doi:10.1016/j.saa.2009.06.033
  • Iamsamai, C., Hannongbua, S., Ruktanonchai, U., Soottitantawat, A., & Dubas, S. T. (2010). The effect of the degree of deacetylation of chitosan on its dispersion of carbon nanotubes. Carbon, 48, 25–30. doi:10.1016/j.carbon.2009.06.060
  • Iancu, C., & Mocan, L. (2011). Advances in cancer therapy through the use of carbon nanotube-mediated targeted hyperthermia. International Journal of Nanomedicine, 6, 1675–1684. doi:10.2147/ijn.s23588
  • Kabsch, W., & Sander, C. (1983). Dictionary of protein secondary structure: Pattern recognition of hydrogen-bonded and geometrical features. Biopolymers, 22, 2577–2637. doi:10.1002/bip.360221211
  • Katzel, J., Fanucchi, M., & Li, Z. (2009). Recent advances of novel targeted therapy in non-small cell lung cancer. Journal of Hematology & Oncology, 2, 2–19. doi:10.1186/1756-8722-2-2
  • Lax, I., Bellot, F., Howk, R., Ullrich, A., Givol, D., & Schlessinger, J. (1989). Functional analysis of the ligand binding site of EGF-receptor utilizing chimeric chicken/human receptor molecules. The EMBO journal, 8, 421–427. Retrieved from http://www.ncbi.nlm.nih.gov/pmc/articles/PMC400822/
  • Lee, D., Lockey, R., & Mohapatra, S. (2006). Folate receptor-mediated cancer cell specific gene delivery using folic acid-conjugated oligochitosans. Journal of Nanoscience and Nanotechnology, 6, 2860–2866. doi:10.1166/jnn.2006.465
  • Lemmon, M. A. (2009). Ligand-induced ErbB receptor dimerization. Experimental Cell Research, 315, 638–648. doi:10.1016/j.yexcr.2008.10.024
  • Li, C., Yang, K., Zhang, Y., Tang, H., Yan, F., Tan, L., … Yao, S. (2011). Highly biocompatible multi-walled carbon nanotube–chitosan nanoparticle hybrids as protein carriers. Acta Biomaterialia, 7, 3070–3077. doi:10.1016/j.actbio.2011.05.005
  • Liu, P., Li, Z., Zhu, M., Sun, Y., Li, Y., Wang, H., & Duan, Y. (2010). Preparation of EGFR monoclonal antibody conjugated nanoparticles and targeting to hepatocellular carcinoma. Journal of Materials Science: Materials in Medicine, 21, 551–556. doi:10.1007/s10856-009-3925-8
  • Lurje, G., & Lenz, H. J. (2009). EGFR signaling and drug discovery. Oncology, 77, 400–410. doi:10.1159/000279388
  • Malaisree, M., Rungrotmongkol, T., Nunthaboot, N., Aruksakunwong, O., Intharathep, P., Decha, P., … Hannongbua, S. (2009). Source of oseltamivir resistance in avian influenza H5N1 virus with the H274Y mutation. Amino Acids, 37, 725–732. doi:10.1007/s00726-008-0201-z
  • Mendelsohn, J. (2001). The epidermal growth factor receptor as a target for cancer therapy. Endocrine-Related Cancer, 8, 3–9. doi:10.1677/erc.0.0080003
  • Metz, A., Pfleger, C., Kopitz, H., Pfeiffer-Marek, S., Baringhaus, K.-H., & Gohlke, H. (2012). Hot spots and transient pockets: Predicting the determinants of small-molecule binding to a protein–protein interface. Journal of Chemical Information and Modeling, 52, 120–133. doi:10.1021/ci200322s
  • Miller, B. R., McGee, T. D., Swails, J. M., Homeyer, N., Gohlke, H., & Roitberg, A. E. (2012). MMPBSA.py: An efficient program for end-state free energy calculations. Journal of Chemical Theory and Computation, 8, 3314–3321. doi:10.1021/ct300418h
  • Mitsudomi, T. (2010). Advances in target therapy for lung cancer. Japanese Journal of Clinical Oncology, 40, 101–106. doi:10.1093/jjco/hyp174
  • Miyamoto, S., & Kollman, P. (1992). Settle: An analytical version of the SHAKE and RATTLE algorithm for rigid water models. Journal of Computational Chemistry, 13, 952–962. doi:10.1002/jcc.540130805
  • Nielsen, J. S., Jakobsen, E., Hølund, B., Bertelsen, K., & Jakobsen, A. (2004). Prognostic significance of p53, Her-2, and EGFR overexpression in borderline and epithelial ovarian cancer. International Journal of Gynecological Cancer, 14, 1086–1096. doi:10.1111/j.1048-891X.2004.14606.x
  • Normanno, N., De Luca, A., Bianco, C., Strizzi, L., Mancino, M., Maiello, M. R., … Salomon, D. S. (2006). Epidermal growth factor receptor (EGFR) signaling in cancer. Gene, 366, 2–16. doi:10.1016/j.gene.2005.10.018
  • Nunthaboot, N., Rungrotmongkol, T., Malaisree, M., Kaiyawet, N., Decha, P., Sompornpisut, P., … Hannongbua, S. (2010). Evolution of human receptor binding affinity of H1N1 hemagglutinins from 1918 to 2009 pandemic influenza a virus. Journal of Chemical Information and Modeling, 50, 1410–1417. doi:10.1021/ci100038g
  • Ogiso, H., Ishitani, R., Nureki, O., Fukai, S., Yamanaka, M., Kim, J.-H., … Yokoyama, S. (2002). Crystal structure of the complex of human epidermal growth factor and receptor extracellular domains. Cell, 110, 775–787. doi:10.1016/S0092-8674(02)00963-7
  • Park, J. H., Saravanakumar, G., Kim, K., & Kwon, I. C. (2010). Targeted delivery of low molecular drugs using chitosan and its derivatives. Advanced Drug Delivery Reviews, 62, 28–41. doi:10.1016/j.addr.2009.10.003
  • Pok, S., Vitale, F., Eichmann, S. L., Benavides, O. M., Pasquali, M., & Jacot, J. G. (2014). Biocompatible carbon nanotube-chitosan scaffold matching the electrical conductivity of the heart. ACS Nano, 8, 9822–9832. doi:10.1021/nn503693h
  • Poongavanam, V., Olsen, J. M. H., & Kongsted, J. (2014). Binding free energy based structural dynamics analysis of HIV-1 RT RNase H-inhibitor complexes. Integrative Biology, 6, 1010–1022. doi:10.1039/c4ib00111g
  • Press, M., & Lenz, H.-J. (2007). EGFR, HER2 and VEGF pathways. Drugs, 67, 2045–2075. doi:10.2165/00003495-200767140-00006
  • Rastelli, G., Rio, A. D., Degliesposti, G., & Sgobba, M. (2010). Fast and accurate predictions of binding free energies using MM-PBSA and MM-GBSA. Journal of Computational Chemistry, 31, 797–810. doi:10.1002/jcc.21372
  • Rocchia, W., Alexov, E., & Honig, B. (2001). Extending the applicability of the nonlinear Poisson−Boltzmann equation: Multiple dielectric constants and multivalent ions†. The Journal of Physical Chemistry B, 105, 6507–6514. doi:10.1021/jp010454y
  • Rungnim, C., Arsawang, U., Rungrotmongkol, T., & Hannongbua, S. (2012). Molecular dynamics properties of varying amounts of the anticancer drug gemcitabine inside an open-ended single-walled carbon nanotube. Chemical Physics Letters, 550, 99–103. doi:10.1016/j.cplett.2012.08.050
  • Rungnim, C., Rungrotmongkol, T., Hannongbua, S., & Okumura, H. (2013). Replica exchange molecular dynamics simulation of chitosan for drug delivery system based on carbon nanotube. Journal of Molecular Graphics and Modelling, 39, 183–192. doi:10.1016/j.jmgm.2012.11.004
  • Rungrotmongkol, T., Arsawang, U., Iamsamai, C., Vongachariya, A., Dubas, S. T., Ruktanonchai, U., … Hannongbua, S. (2011). Increased dispersion and solubility of carbon nanotubes noncovalently modified by the polysaccharide biopolymer, chitosan: MD simulations. Chemical Physics Letters, 507, 134–137. doi:10.1016/j.cplett.2011.03.066
  • Saikia, N., Jha, A. N., & Deka, R. C. (2013). Dynamics of fullerene-mediated heat-driven release of drug molecules from carbon nanotubes. The Journal of Physical Chemistry Letters, 4, 4126–4132. doi:10.1021/jz402231p
  • Sanders, J. M., Wampole, M. E., Thakur, M. L., & Wickstrom, E. (2013). Molecular determinants of epidermal growth factor binding: a molecular dynamics study. PLoS One, 8, e54136. doi:10.1371/journal.pone.0054136
  • Shevtsov, M. A., Nikolaev, B. P., Yakovleva, L. Y., Marchenko, Y. Y., Dobrodumov, A. V., Mikhrina, A. L., … Ischenko, A. M. (2014). Superparamagnetic iron oxide nanoparticles conjugated with epidermal growth factor (SPION–EGF) for targeting brain tumors. International Journal of Nanomedicine, 9, 273–287. doi:10.2147/ijn.s55118
  • Still, W. C., Tempczyk, A., Hawley, R. C., & Hendrickson, T. (1990). Semianalytical treatment of solvation for molecular mechanics and dynamics. Journal of the American Chemical Society, 112, 6127–6129. doi:10.1021/ja00172a038
  • Talavera, A., Friemann, R., Gomez-Puerta, S., Martinez-Fleites, C., Garrido, G., Rabasa, A., … Moreno, E. (2009). Nimotuzumab, an antitumor antibody that targets the epidermal growth factor receptor, blocks ligand binding while permitting the active receptor conformation. Cancer Research, 69, 5851–5859. doi:10.1158/0008-5472.can-08-4518
  • Tessier, M. B., DeMarco, M. L., Yongye, A. B., & Woods, R. J. (2008). Extension of the GLYCAM06 biomolecular force field to lipids, lipid bilayers and glycolipids. Molecular Simulation, 34, 349–364. doi:10.1080/08927020701710890
  • Tseng, C. L., Wu, S. Y. H., Wang, W. H., Peng, C. L., Lin, F. H., Lin, C. C., … Shieh, M. J. (2008). Targeting efficiency and biodistribution of biotinylated-EGF-conjugated gelatin nanoparticles administered via aerosol delivery in nude mice with lung cancer. Biomaterials, 29, 3014–3022. doi:10.1016/j.biomaterials.2008.03.033
  • Vardharajula, S., Ali, S. Z., Tiwari, P. M., Eroğlu, E., Vig, K., Dennis, V. A., & Singh, S. R. (2012). Functionalized carbon nanotubes: Biomedical applications. International Journal of Nanomedicine, 7, 5361–5374. doi:10.2147/ijn.s35832
  • Xue, W., Yang, Y., Wang, X., Liu, H., & Yao, X. (2014). Computational study on the inhibitor binding mode and allosteric regulation mechanism in hepatitis C virus NS3/4A protein. PLoS One, 9, e87077. doi:10.1371/journal.pone.0087077
  • Yang, L. L., Mao, H., Wang, Y. A., Cao, Z. H., Peng, X. H., Wang, X. X., … Nie, S. M. (2009). Single chain epidermal growth factor receptor antibody conjugated nanoparticles for in vivo tumor targeting and imaging. Small (Weinheim an der Bergstrasse, Germany), 5, 235–243. doi:10.1002/smll.200800714

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.