182
Views
3
CrossRef citations to date
0
Altmetric
Research Articles

Resonance Raman and vibrational mode analysis used to predict ligand geometry for docking simulations of a water soluble porphyrin and tubulin

, , &
Pages 1998-2010 | Received 25 Aug 2015, Accepted 27 Sep 2015, Published online: 30 Nov 2015

References

  • Andrade, S. M., & Costa, S. M. B. (2002). Spectroscopic studies on the interaction of a water soluble porphyrin and two drug carrier proteins. Biophysical Journal, 82, 1607–1619. doi:10.1016/S0006-3495(02)75512-4
  • Aydin, M. (2014). Comparative study of the structural and vibroelectronic properties of porphyrin and its derivatives. Molecules, 19, 20988–21021. doi:10.3390/molecules191220988
  • Belcher, J., Sansone, S., Fernandez, N. F., Haskins, W. E., & Brancaleon, L. (2009). Photoinduced unfolding of β-lactoglobulin mediated by a water-soluble porphyrin. The Journal of Physical Chemistry B, 113, 6020–6030. doi:10.1021/jp900957d
  • Bour, P., Záruba, K., Urbanová, M., Setnicka, V., Matejka, P., Fiedler, Z., … Volka, K. (2000). Vibrational circular dichroism of tetraphenylporphyrin in peptide complexes? A computational study. Chirality, 12, 191–198. doi:10.1002/(SICI)1520-636X(2000)12:4<191::AID-CHIR5>3.0.CO;2-W10.1002/(ISSN)1520-636X
  • Callender, R., & Deng, H. (1994). Nonresonance Raman difference spectroscopy: A general probe of protein structure, ligand binding, enzymatic catalysis, and the structures of other biomacromolecules. Annual Review of Biophysics and Biomolecular Structure, 23, 215–245. doi:10.1146/annurev.bb.23.060194.001243
  • Chan, C. K., & Page, J. B. (1983). Temperature effects in the time-correlator theory of resonance Raman scattering. The Journal of Chemical Physics, 79, 5234–5250. doi:10.1063/1.445712
  • Chi, S., Xie, W., Zhang, J., & Xu, S. (2015). Theoretical insight into the structural mechanism for the binding of vinblastine with tubulin. Journal of Biomolecular Structure and Dynamics, 33, 2234–2254. doi:10.1080/07391102.2014.999256
  • Clark, C. D., Denton, M. L., & Thomas, R. J. (2011). Mathematical model that describes the transition from thermal to photochemical damage in retinal pigment epithelial cell culture. Journal of Biomedical Optics, 16, 020504. doi:10.1117/1.3544504
  • Cremer, D., & Kraka, E. (2010). From molecular vibrations to bonding, chemical reactions, and reaction mechanism. Current Organic Chemistry, 14, 1524–1560. doi:10.2174/138527210793563233
  • Detty, M. R., Gibson, S. L., & Wagner, S. J. (2004). Current clinical and preclinical photosensitizers for use in photodynamic therapy. Journal of Medicinal Chemistry, 47, 3897–3915. doi:10.1021/jm040074b
  • Dirac, P. A. M. (1927). The quantum theory of the emission and absorption of radiation. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 114, 243–265. doi:10.1098/rspa.1927.0039
  • Dobson, C. M. (2004). Experimental investigation of protein folding and misfolding. Methods, 34, 4–14. doi:10.1016/j.ymeth.2004.03.002
  • Downing, K. H., & Nogales, E. (1998). Tubulin structure: Insights into microtubule properties and functions. Current Opinion in Structural Biology, 8, 785–791. doi:10.1016/S0959-440X(98)80099-7
  • Dutcher, S. K. (2001). The tubulin fraternity: Alpha to eta. Current Opinion in Cell Biology, 13, 49–54. doi:10.1016/S0955-0674(00)00173-3
  • Fani, N., Bordbar, A. K., Ghayeb, Y., & Sepehri, S. (2015a). Computational design of tryprostatin-A derivatives as novel αβ-tubulin inhibitors. Journal of Biomolecular Structure and Dynamics, 33, 471–486. doi:10.1080/07391102.2014.892028
  • Fani, N., Bordbar, A. K., Ghayeb, Y., & Sepehri, S. (2015b). Integrating docking and molecular dynamics approaches for a series of proline-based 2,5-diketopiperazines as novel αβ-tubulin inhibitors. Journal of Biomolecular Structure and Dynamics, 33, 2285–2295. doi:10.1080/07391102.2014.1000377
  • Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., … Fox, D. J. (2009). Gaussian 09, Revision D.01. Wallingford: Gaussian.
  • Geney, R., Sun, L., Pera, P., Bernacki, R. J., Xia, S., Horwitz, S. B., … Ojima, I. (2005). Use of the tubulin bound paclitaxel conformation for structure-based rational drug design. Chemistry & Biology, 12, 339–348. doi:10.1016/j.chembiol.2005.01.004
  • Geno, M. K., & Halpern, J. (1987). Why does nature not use the porphyrin ligand in vitamin B12? Journal of the American Chemical Society, 109, 1238–1240. doi:10.1021/ja00238a039
  • Ghosh, P. K., Smirnov, A. Y., & Nori, F. (2011). Quantum effects in energy and charge transfer in an artificial photosynthetic complex. The Journal of Chemical Physics, 134, 244103. doi:10.1063/1.3600341
  • Gigant, B., Wang, C., Ravelli, R. B. G., Roussi, F., Steinmetz, M. O., Curmi, P. A., … Knossow, M. (2005). Structural basis for the regulation of tubulin by vinblastine. Nature, 435, 519–522. doi:10.1038/nature03566
  • He, L., Orr, G. A., & Horwitz, S. B. (2001). Novel molecules that interact with microtubules and have functional activity similar to Taxol™. Drug Discovery Today, 6, 1153–1164. doi:10.1016/S1359-6446(01)02038-4
  • Heller, E. J., Sundberg, R. L., & Tannor, D. (1982). Simple aspects of Raman scattering. The Journal of Physical Chemistry, 86, 1822–1833. doi:10.1021/j100207a018
  • Hizhyakov, V., & Tehver, I. (1967). Theory of resonant secondary radiation due to impurity centres in crystals. Physica Status Solidi (B), 21, 755–768. doi:10.1002/pssb.19670210237
  • Howard, W. D., & Timasheff, S. N. (1988). Linkages between the effects of taxol, colchicine, and GTP on tubulin polymerization. Journal of Biological Chemistry, 263, 1342–1346.
  • Jacobson, K., Rajfur, Z., Vitriol, E., & Hahn, K. (2008). Chromophore-assisted laser inactivation in cell biology. Trends in Cell Biology, 18, 443–450. doi:10.1016/j.tcb.2008.07.001
  • Jarzȩcki, A. A., Kozlowski, P. M., Pulay, P., Ye, B., & Li, X.-Y. (1997). Scaled quantum mechanical and experimental vibrational spectra of magnesium and zinc porphyrins. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 53, 1195–1209. doi:10.1016/S1386-1425(96)01870-7
  • Jarzȩcki, A. A., & Spiro, T. G. (2005). Porphyrin distortion from resonance Raman intensities of out-of-plane modes: Computation and modeling of N-methylmesoporphyrin, a ferrochelatase transition state analog. The Journal of Physical Chemistry A, 109, 421–430. doi:10.1021/jp0470142
  • Jentzen, W., Song, X., & Shelnutt, J. A. (1997). Structural characterization of synthetic and protein-bound porphyrins in terms of the lowest-frequency normal coordinates of the macrocycle. The Journal of Physical Chemistry B, 101, 1684–1699. doi:10.1021/jp963142h
  • Jiménez, V. A., Alderete, J. B., & Navarrete, K. R. (2015). Structural insight into epothilones antitumor activity based on the conformational preferences and tubulin binding modes of epothilones A and B obtained from molecular dynamics simulations. Journal of Biomolecular Structure and Dynamics, 33, 789–803. doi:10.1080/07391102.2014.911702
  • Kingston, D. G., Bane, S., & Snyder, J. P. (2005). The taxol pharmacophore and the T-taxol bridging principle. Cell Cycle, 4, 279–289. doi:10.4161/cc.4.2.1408
  • Kong, J., White, C. A., Krylov, A. I., Sherrill, D., Adamson, R. D., Furlani, T. R., … Pople, J. A. (2000). Q-Chem 2.0: A high-performance ab initio electronic structure program package. Journal of Computational Chemistry, 21, 1532–1548. doi:10.1002/1096-987X(200012)21:16<1532:AID-JCC10>3.0.CO;2-W
  • Kozlowski, P. M., Jarzȩcki, A. A., & Pulay, P. (1996a). Vibrational assignment and definite harmonic force field for porphine. 1. Scaled quantum mechanical results and comparison with empirical force field. The Journal of Physical Chemistry, 100, 7007–7013. doi:10.1021/jp953619+
  • Kozlowski, P. M., Jarzȩcki, A. A., & Pulay, P. (1996b). Vibrational assignment and definite harmonic force field for porphine. 2. Comparison with nonresonance Raman data. The Journal of Physical Chemistry, 100, 13985–13992. doi:10.1021/jp9612902
  • Kozlowski, P. M., Rush, T. S., III, Jarzecki, A. A., Zgierski, M. Z., Chase, B., Piffat, C., … Spiro, T. G. (1999). DFT-SQM force field for nickel porphine: Intrrinsic ruffling. The Journal of Physical Chemistry A, 103, 1357–1366. doi:10.1021/jp9819700
  • Lakowicz, J. R. (2006). Principles of fluorescence spectroscopy (3rd ed.). New York, NY: Springer.10.1007/978-0-387-46312-4
  • Lecerof, D., Fodje, M., Hansson, A., Hansson, M., & Al-Karadaghi, S. (2000). Structural and mechanistic basis of porphyrin metallation by ferrochelatase. Journal of Molecular Biology, 297, 221–232. doi:10.1006/jmbi.2000.3569
  • Lee, S., & Heller, E. J. (1979). Time-dependent theory of Raman scattering. The Journal of Chemical Physics, 71, 4777. doi:10.1063/1.438316
  • Lieber, C., & Mahadevan-Jansen, A. (2003). Automated method for subtraction of fluorescence from biological Raman spectra. Applied Spectroscopy, 57, 1363–1367. doi:10.1366/000370203322554518
  • Long, D. A. (2002). The Raman effect: A unified treatment of the theory of Raman scattering by molecules. New York, NY: Wiley.10.1002/0470845767
  • Löwe, J., Li, H., Downing, K. H., & Nogales, E. (2001). Refined structure of αβ-tubulin at 3.5 Å resolution. Journal of Molecular Biology, 313, 1045–1057. doi:10.1006/jmbi.2001.5077
  • McMicken, B., Thomas, R. J., & Brancaleon, L. (2014). Photoinduced partial unfolding of tubulin bound to meso-tetrakis(sulfonatophenyl) porphyrin leads to inhibition of microtubule formation in vitro. Journal of Biophotonics, 7, 874–888. doi:10.1002/jbio.201300066
  • Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., & Olson, A. J. (2009). AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of Computational Chemistry, 30, 2785–2791. doi:10.1002/jcc.21256
  • Mroginski, M. A., Murgida, D. H., & Hildebrandt, P. (2006). Calculation of vibrational spectra of linear tetrapyrroles. 4. Methine bridge C−H out-of-plane modes. The Journal of Physical Chemistry A, 110, 10564–10574. doi:10.1021/jp063128x
  • Nogales, E., Wolf, S. G., & Downing, K. H. (1998). Structure of the ab tubulin dimer by electron crystallography. Nature, 391, 199–203. doi:10.1038/34465
  • Ochterski, J. W. (1999). Vibrational analysis in Gaussian. Retrieved from http://www.gaussian.com/g_whitepap/vib.htm
  • Parker, J. E., Thomas, R. T., Morisson, D., & Brancaleon, L. (2012). Combination of resonance Raman spectroscopy and docking simulations to study the nonspecific binding of a free-base porphyrin to a globular protein. The Journal of Physical Chemistry B, 116, 11032–11040. doi:10.1021/jp304310z
  • Parthasarathi, N., Hansen, C., Yamaguchi, S., & Spiro, T. G. (1987). Metalloporphyrin core size resonance Raman marker bands revisited: Implications for the interpretation of hemoglobin photoproduct Raman frequencies. Journal of the American Chemical Society, 109, 3865–3871. doi:10.1021/ja00247a009
  • Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., & Ferrin, T. E. (2004). UCSF chimera?A visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25, 1605–1612. doi:10.1002/jcc.20084
  • Radford, S. E. (2000). Protein folding: Progress made and promises ahead. Trends in Biochemical Sciences, 25, 611–618. doi:10.1016/S0968-0004(00)01707-2
  • Rich, C. C., & McHale, J. L. (2012). Influence of hydrogen bonding on excitonic coupling and hierarchal structure of a light-harvesting porphyrin aggregate. Physical Chemistry Chemical Physics, 14, 2362–2374. doi:10.1039/c2cp23362b
  • Rosa, A., Ricciardi, G., Baerends, E. J., Romeo, A., & Monsù Scolaro, L. (2003). Effects of porphyrin core saddling, meso -phenyl twisting, and counterions on the optical properties of meso-tetraphenylporphyrin diacids: The [H 4 TPP](X) 2 (X = F, Cl, Br, I) series as a case study. The Journal of Physical Chemistry A, 107, 11468–11482. doi:10.1021/jp030999n
  • Rush, T. S., III, Kozlowski, P. M., Piffat, C. A., Kumble, R., Zgierski, M. Z., & Spiro, T. G. (2000). Computational modeling of metalloporphyrin structure and vibrational spectra: Porphyrin ruffling in NiTPP. The Journal of Physical Chemistry B, 104, 5020–5034. doi:10.1021/jp000266s
  • Saini, G. S. S. (2006). Resonance Raman study of free-base tetraphenylporphine and its dication. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 64, 981–986. doi:10.1016/j.saa.2005.09.008
  • Sathyanarayana, D. N. (1996). Vibrational spectroscopy: Theory and applications. New Delhi: New Age International Pvt Ltd.
  • Sharma, S., Ganesh, T., Kingston, D. G., & Bane, S. (2007). Promotion of tubulin assembly by poorly soluble taxol analogs. Analytical Biochemistry, 360, 56–62. doi:10.1016/j.ab.2006.10.014
  • Shelnutt, J. A., Song, X.-Z., Ma, J.-G., Jia, S.-L., Jentzen, W., & Medforth, C. J. (1998). Nonplanar porphyrins and their significance in proteins. Chemical Society Reviews, 27, 31–42. doi:10.1039/A827031Z
  • Spiro, T. G., Smulevich, G., & Su, C. (1990). Probing protein structure and dynamics with resonance Raman spectroscopy: Cytochrome c peroxidase and hemoglobin. Biochemistry, 29, 4497–4508. doi:10.1021/bi00471a001
  • Sun, Y., Benabbas, A., Zeng, W., Kleingardner, J. G., Bren, K. L., & Champion, P. M. (2014). Investigations of heme distortion, low-frequency vibrational excitations, and electron transfer in cytochrome c. Proceedings of the National Academy of Sciences, 111, 6570–6575. doi:10.1073/pnas.1322274111
  • Tian, F., Johnson, E. M., Zamarripa, M., Sansone, S., & Brancaleon, L. (2007). Binding of porphyrins to tubulin heterodimers. Biomacromolecules, 8, 3767–3778. doi:10.1021/bm700687x
  • Tuszynski, J. A., & Kurzynski, M. (2003). Introduction to molecular biophysics. Boca Raton, FL: CRC Press10.1201/9780203009963
  • Valdez, R., Johnson, E. M., Belcher, J. A., Fuini, J. F., III, & Brancaleon, L. (2009). Porphyrins affect the self-assembly of tubulin in solution. Biophysical Chemistry, 145, 98–104. doi:10.1016/j.bpc.2009.09.006
  • van Holde, K. E., Johnson, W. C., & Ho, P. S. (2006). Principles of physical biochemistry (2nd ed.). Upper Saddle River, NJ: Pearson Prentice Hall.
  • Wojdyr, M. (2010). Fityk: A general-purpose peak fitting program. Journal of Applied Crystallography, 43, 1126–1128. doi:10.1107/S0021889810030499
  • Yanai, H., Takeuchi, K., & Takane, Y. (2011). Projection matrices, generalized inverse matrices, and singular value decomposition. New York, NY: Springer.10.1007/978-1-4419-9887-3
  • Zhang, Y., Chen, D., He, T., & Liu, F. (2003). Raman and infrared spectral study of meso-sulfonatophenyl substituted porphyrins (TPPSn, n = 1, 2A, 2O, 3, 4). Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 59, 87–101. doi:10.1016/S1386-1425(02)00124-5

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.