204
Views
7
CrossRef citations to date
0
Altmetric
Research Articles

In silico studies on the interaction between bioactive ligands and ALK5, a biological target related to the cancer treatment

, , , &
Pages 2045-2053 | Received 19 Jun 2015, Accepted 07 Oct 2015, Published online: 08 Mar 2016

References

  • Akhurst, R. J., & Hata, A. (2012). Targeting the TGFβ signalling pathway in disease. Nature Reviews Drug Discovery, 11, 790–811.10.1038/nrd3810
  • Almeida, M. O., Maltarollo, V. G., Toledo, R. A., Shim, H., Santos, M. C., & Honorio, K. M. (2014). Medicinal electrochemistry: Integration of electrochemistry, medicinal chemistry and computational chemistry. Current Medicinal Chemistry, 21, 2266–2275.10.2174/0929867321666140217120655
  • Araujo, S. C., Maltarollo, V. G., & Honorio, K. M. (2013). Computational studies of TGF-βRI (ALK-5) inhibitors: Analysis of the binding interactions between ligand–receptor using 2D and 3D techniques. European Journal of Pharmaceutical Sciences, 49, 542–549.10.1016/j.ejps.2013.05.015
  • Arjaans, M., Oude Munnink, T. H., Timmer-Bosscha, H., Reiss, M., Walenkamp, A. M. E., Lub-de Hooge, M. N., … Schröder, C. P. (2012). Transforming growth factor (TGF)-β expression and activation mechanisms as potential targets for anti-tumor therapy and tumor imaging. Pharmacology & Therapeutics, 135, 123–132.
  • Barreiro, E. J., Rodrigues, C. R., Albuquerque, M. G., & Sant’Anna, C. M. R., & Alencastro, R. B. (1997). Modelagem molecular: Uma ferramenta para o planejamento racional de fármacos em química medicinal [Molecular modeling: a tool for rational drug design in medicinal chemistry]. Química Nova, 20, 300–310.10.1590/S0100-40421997000300011
  • Clark, R., & Fox, P. (2004). Statistical variation in progressive scrambling. Journal of Computer-Aided Molecular Design, 18, 563–576.10.1007/s10822-004-4077-z
  • Cramer, R. D., Patterson, D. E., & Bunce, J. D. (1988). Comparative molecular field analysis (CoMFA). 1. Effect of shape on binding of steroids to carrier proteins. Journal of the American Chemical Society, 110, 5959–5967.10.1021/ja00226a005
  • de Carvalho, L. L., Maltarollo, V. G., de Lima, E. F., Weber, K. C., Honorio, K. M., & da Silva, A. B. F. (2014). Molecular features related to HIV integrase inhibition obtained from structure- and ligand-based approaches. PLoS ONE, 9, e81301.10.1371/journal.pone.0081301
  • Duffy, M. J. (2013). The war on cancer: Are we winning? Tumor Biology, 34, 1275–1284.10.1007/s13277-013-0759-2
  • Ferreira, M. M. C. (2002). Multivariate QSAR. Journal of the Brazilian Chemical Society, 13, 742–753.
  • Garber, K. (2009). Companies waver in efforts to target transforming growth factor β in cancer. JNCI Journal of the National Cancer Institute, 101, 1664–1667.10.1093/jnci/djp462
  • Geldenhuys, W. J., & Nakamura, H. (2010). 3D-QSAR and docking studies on transforming growth factor (TGF)-beta receptor 1 antagonists. Bioorganic & Medicinal Chemistry Letters, 20, 1918–1923.
  • Gellibert, F., Fouchet, M. H., Nguyen, V. L., Wang, R., Krysa, G., de Gouville, A. C., … Dodic, N. (2009). Design of novel quinazoline derivatives and related analogues as potent and selective ALK5 inhibitors. Bioorganic & Medicinal Chemistry Letters, 19, 2277–2281.
  • Gertrudes, J. C., Maltarollo, V. G., Silva, R. A., Oliveira, P. R., Honorio, K. M., & da Silva, A. B. F. (2012). Machine learning techniques and drug design. Current Medicinal Chemistry, 19, 4289–4297.10.2174/092986712802884259
  • Gilat, A. (2004). MATLAB: An introduction with applications. New York, NY: Wiley.
  • Griffiths, M., & Sundaram, H. (2011). Drug design and testing: Profiling of antiproliferative agents for cancer therapy using a cell-based methyl-[3H]-thymidine incorporation assay. In I. A. Cree (Ed.), Cancer cell culture (pp. 451–465). New York, NY: Humana Press.10.1007/978-1-61779-080-5
  • Hanahan, D., & Weinberg, R. A. (2011). Hallmarks of cancer: The next generation. Cell, 144, 646–674.10.1016/j.cell.2011.02.013
  • Hantschel, O., Grebien, F., & Superti-Furga, G. (2012). The growing arsenal of ATP-competitive and allosteric inhibitors of BCR–ABL. Cancer Research, 72, 4890–4895.10.1158/0008-5472.CAN-12-1276
  • Honorio, K. M., Salum, L. B., Garratt, R. C., Polikarpov, I., & Andricopulo, A. D. (2008). Two- and three-dimensional quantitative structure-activity relationships studies on a series of liver X receptor ligands. The Open Medicinal Chemistry Journal, 2, 87–96.10.2174/1874104500802010087
  • Hurvitz, S. A., Hu, Y., O’Brien, N., & Finn, R. S. (2013). Current approaches and future directions in the treatment of HER2-positive breast cancer. Cancer Treatment Reviews, 39, 219–229.10.1016/j.ctrv.2012.04.008
  • Inman, G. J., Nicolás, F. J., Callahan, J. F., Harling, J. D., Gaster, L. M., Reith, A. D., … Hill, C. S. (2002). SB-431542 Is a potent and specific inhibitor of transforming growth factor-beta superfamily type I activin receptor-like kinase (ALK) receptors ALK4, ALK5, and ALK7. Molecular Pharmacology, 62, 65–74.10.1124/mol.62.1.65
  • Jain, S., & Ghate, M. (2014). Atom-based pharmacophore modeling, CoMFA/CoMSIA-based 3D-QSAR studies and lead optimization of DPP-4 inhibitors for the treatment of type 2 diabetes. Medicinal Chemistry Research, 23, 3436–3450.10.1007/s00044-014-0923-2
  • Jin, C. H., Krishnaiah, M., Sreenu, D., Rao, K. S., Subrahmanyam, V. B., Park, C.-Y., … Kim, D.-K. (2011a). Synthesis and biological evaluation of 1-substituted-3(5)-(6-methylpyridin-2-yl)-4-(quinolin-6-yl)pyrazoles as transforming growth factor-β type 1 receptor kinase inhibitors. Bioorganic & Medicinal Chemistry, 19, 2633–2640.
  • Jin, C. H., Krishnaiah, M., Sreenu, D., Subrahmanyam, V. B., Rao, K. S., Mohan, A. V. N., … Kim, D.-K. (2011b). Synthesis and biological evaluation of 1-substituted-3-(6-methylpyridin-2-yl)-4-([1,2,4]triazolo[1,5-a]pyridin-6-yl)pyrazoles as transforming growth factor-β type 1 receptor kinase inhibitors. Bioorganic & Medicinal Chemistry Letters, 21, 6049–6053.
  • Jin, C. H., Sreenu, D., Krishnaiah, M., Subrahmanyam, V. B., Rao, K. S., Nagendra Mohan, A. V., … Kim, D.-K. (2011c). Synthesis and biological evaluation of 1-substituted-3(5)-(6-methylpyridin-2-yl)-4-(quinoxalin-6-yl)pyrazoles as transforming growth factor-β type 1 receptor kinase inhibitors. European Journal of Medicinal Chemistry, 46, 3917–3925.10.1016/j.ejmech.2011.05.063
  • Jones, G., Willett, P., & Glen, R. C. (1995). Molecular recognition of receptor sites using a genetic algorithm with a description of desolvation. Journal of Molecular Biology, 245, 43–53.10.1016/S0022-2836(95)80037-9
  • Kim, K. H. (1995). Comparative molecular field analysis (CoMFA). In P. M. Dean (Ed.), Molecular similarity in drug design (pp. 291–331). Amsterdam: Springer.10.1007/978-94-011-1350-2
  • Kim, D.-K., Lee, Y.-I., Lee, Y. W., Dewang, P. M., Sheen, Y. Y., Kim, Y. W., … Kim, Y.-K. (2010). Synthesis and biological evaluation of 4(5)-(6-methylpyridin-2-yl)imidazoles and -pyrazoles as transforming growth factor-β type 1 receptor kinase inhibitors. Bioorganic & Medicinal Chemistry, 18, 4459–4467.
  • Klebe G. (1998). Comparative molecular similarity indices analysis: CoMSIA. In H. Kubinyi, G. Folkers, & Y. Martin (Eds.), 3D QSAR in drug design (pp. 87–104). Amsterdam: Springer.
  • Klebe, G., Abraham, U., & Mietzner, T. (1994). Molecular similarity indices in a comparative analysis (CoMSIA) of drug molecules to correlate and predict their biological activity. Journal of Medicinal Chemistry, 37, 4130–4146.10.1021/jm00050a010
  • Krishnaiah, M., Jin, C. H., Sreenu, D., Subrahmanyam, V. B., Rao, K. S., Son, D.-H., … Kim, D.-K. (2012). Synthesis and biological evaluation of 2-benzylamino-4(5)-(6-methylpyridin-2-yl)-5(4)-([1,2,4]triazolo[1,5-a]-pyridin-6-yl)thiazoles as transforming growth factor-β type 1 receptor kinase inhibitors. European Journal of Medicinal Chemistry, 57, 74–84.10.1016/j.ejmech.2012.09.011
  • Kubinyi, H. (1997a). QSAR and 3D QSAR in drug design Part 1: Methodology. Drug Discovery Today, 2, 457–467.10.1016/S1359-6446(97)01079-9
  • Kubinyi, H. (1997b). QSAR and 3D QSAR in drug design Part 2: Applications and problems. Drug Discovery Today, 2, 538–546.10.1016/S1359-6446(97)01084-2
  • Lemke, T. L., Williams, D. A., Roche, V. F., & Zito, S. W. (2008). Foye’s principles of medicinal chemistry. Philadelphia, PA: Lippincott Williams & Wilkins.
  • Maltarollo, V. G., Gertrudes, J. C., Oliveira, P. R., & Honorio, K. M. (2014). Applying machine learning techniques for ADME-Tox prediction: A review. Expert Opinion on Drug Metabolism & Toxicology, 11, 259–271.
  • Maltarollo, V. G., Silva, D. C., & Honório, K. M. (2012). Advanced QSAR studies on PPARδ ligands related to metabolic diseases. Journal of the Brazilian Chemical Society, 23, 78–84.10.1590/S0103-50532012000100013
  • Mitra, I., Roy, P. P., Kar, S., Probir, K. O., & Roy, K. (2010). On further application of r2m as a metric for validation of QSAR models. Journal of Chemometrics, 24, 22–33.
  • Murthy, V. S., & Kulkarni, V. M. (2002). 3D-QSAR CoMFA and CoMSIA on protein tyrosine phosphatase 1B inhibitors. Bioorganic & Medicinal Chemistry, 10, 2267–2282.
  • Siegel, R., Ma, J., Zou, Z., & Jemal, A. (2014). Cancer statistics, 2014. CA: A Cancer Journal for Clinicians, 64, 9–29.
  • Srivastava, V., Kumar, A., Mishra, B. N., & Siddiqi, M. I. (2008). CoMFA and CoMSIA 3D-QSAR analysis of DMDP derivatives as anti-cancer agents. Bioinformation, 2, 384–391.10.6026/bioinformation
  • Stewart, J. J. P. (1989a). Optimization of parameters for semiempirical methods I. Method. Journal of Computational Chemistry, 10, 209–220.10.1002/(ISSN)1096-987X
  • Stewart, J. J. P. (1989b). Optimization of parameters for semiempirical methods II. Applications. Journal of Computational Chemistry, 10, 221–264.10.1002/(ISSN)1096-987X
  • Sybyl (2008). Tripos ( SYBYL 8.0). St. Louis, MO: Tripos International.
  • Trossini, G. H. G., Guido, R. V. C., Oliva, G., Ferreira, E. I., & Andricopulo, A. D. (2009). Quantitative structure–activity relationships for a series of inhibitors of cruzain from Trypanosoma cruzi: Molecular modeling, CoMFA and CoMSIA studies. Journal of Molecular Graphics and Modelling, 28, 3–11.10.1016/j.jmgm.2009.03.001
  • Veras, L. S., Arakawa, M., Funatsu, K., & Takahata, Y. (2010). 2D and 3D QSAR studies of the receptor binding affinity of progestins. Journal of the Brazilian Chemical Society, 21, 872–881.10.1590/S0103-50532010000500015
  • Verdonk, M. L., Chessari, G., Cole, J. C., Hartshorn, M. J., Murray, C. W., Nissink, J. W. M., … Taylor, R. (2005). Modeling water molecules in protein−ligand docking using GOLD. Journal of Medicinal Chemistry, 48, 6504–6515.10.1021/jm050543p
  • Verdonk, M. L., Cole, J. C., Hartshorn, M. J., Murray, C. W., & Taylor, R. D. (2003). Improved protein–ligand docking using GOLD. Proteins: Structure, Function, and Bioinformatics, 52, 609–623.10.1002/prot.10465
  • Wang, H., Sessions, R., Prime, S., Shoemark, D., Allen, S., Hong, W., … Paterson, I. (2013). Identification of novel small molecule TGF-β antagonists using structure-based drug design. Journal of Computer-Aided Molecular Design, 27, 365–372.10.1007/s10822-013-9651-9
  • Weber, K. C., Salum, L. B., Honório, K. M., Andricopulo, A. D., & da Silva, A. B. F. (2010). Pharmacophore-based 3D QSAR studies on a series of high affinity 5-HT1A receptor ligands. European Journal of Medicinal Chemistry, 45, 1508–1514.10.1016/j.ejmech.2009.12.059

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.