282
Views
17
CrossRef citations to date
0
Altmetric
Research Articles

Fragment based G-QSAR and molecular dynamics based mechanistic simulations into hydroxamic-based HDAC inhibitors against spinocerebellar ataxia

, , , , &
Pages 2281-2295 | Received 15 Jul 2015, Accepted 20 Oct 2015, Published online: 04 Mar 2016

References

  • Aalten, D. M., Findlay, J. B., Amadei, A., & Berendsen, H. J. (1995). Essential dynamics of the cellular retinol-binding protein–evidence for ligand-induced conformational changes. Protein Engineering, Design and Selection, 8, 1129–1135. doi:10.1093/protein/8.11.1129
  • Abdullahi, A. D., Abdualkader A. M., Abdul Samat N. H., Mohamed, F., Muhammad, B. Y., Mohammed, H. A., Aljarbou, A., … Kasmuri, A. (2014). Novel insight into the structural requirements of P70S6K inhibition using group-based quantitative structure activity relationship (GQSAR). Journal of Applied Pharmaceutical Science, 4, 16–24. doi:10.7324/JAPS.2014.40603
  • Amadei, A., Linssen, A. B., & Berendsen, H. J. (1993). Essential dynamics of proteins. Proteins: Structure, Function, and Genetics, 17, 412–425. doi:10.1002/prot.340170408
  • Armstrong, J., Bonaventura, I., Rojo, A., González, G., Corral, J., Nadal, N., … Ferrer, I. (2005). Spinocerebellar ataxia type 2 (SCA2) with white matter involvement. Neuroscience Letters, 381, 247–251. doi:10.1016/j.neulet.2005.02.063
  • Bassett, S. A., & Barnett, M. P. (2014). The role of dietary histone deacetylases (HDACs) inhibitors in health and disease. Nutrients, 6, 4273–4301. doi:10.3390/nu6104273
  • Bertrand, P. (2010). Inside HDAC with HDAC inhibitors. European Journal of Medicinal Chemistry, 45, 2095–2116. doi:10.1016/j.ejmech.2010.02.030
  • Bottomley, M. J., Lo Surdo, P., Di Giovine, P., Cirillo, A., Scarpelli, R., Ferrigno, F., … Carfi, A. (2008). Structural and functional analysis of the human HDAC4 catalytic domain reveals a regulatory structural zinc-binding domain. Journal of Biological Chemistry, 283, 26694–26704. doi:10.1074/jbc.M803514200
  • Bürli, R. W., Luckhurst, C. A., Aziz, O., Matthews, K. L., Yates, D., Lyons, K. A., … Dominguez, C. (2013). Design, synthesis, and biological evaluation of potent and selective class IIa histone deacetylase (HDAC) inhibitors as a potential therapy for Huntington’s disease. Journal of Medicinal Chemistry, 56, 9934–9954. doi:10.1021/jm4011884
  • Butler, R., & Bates, G. P. (2006). Histone deacetylase inhibitors as therapeutics for polyglutamine disorders. Nature Reviews Neuroscience, 7, 784–796. doi:10.1038/nrn1989
  • Dhanjal, J. K., Goyal, S., Sharma, S., Hamid, R., & Grover, A. (2014). Mechanistic insights into mode of action of potent natural antagonists of BACE-1 for checking Alzheimer’s plaque pathology. Biochemical and Biophysical Research Communications, 443, 1054–1059. doi:10.1016/j.bbrc.2013.12.088
  • Dhanjal, J. K., Grover, S., Sharma, S., Singh, A., & Grover, A. (2014). Structural insights into mode of actions of novel natural mycobacterium protein tyrosine phosphatase B inhibitors. BMC Genomics, 15(Suppl. 1), S3. doi:10.1016/j.bbrc.2013.12.088
  • Di Giorgio, E., Gagliostro, E., & Brancolini, C. (2015). Selective class IIa HDAC inhibitors: Myth or reality. Cellular and Molecular Life Sciences, 72, 73–86. doi:10.1007/s00018-014-1727-8
  • Didonna, A., & Opal, P. (2015). The promise and perils of HDAC inhibitors in neurodegeneration. Annals of Clinical and Translational Neurology, 2, 79–101. doi:10.1002/acn3
  • Estrada, E., & Molina, E. (2001). Novel local (fragment-based) topological molecular descriptors for QSPR/QSAR and molecular design. Journal of Molecular Graphics and Modelling, 20, 54–64. doi:10.1016/S1093-3263(01)00100-0
  • Finnin, M. S., Donigian, J. R., Cohen, A., Richon, V. M., Rifkind, R. A., Marks, P. A., … Pavletich, N. P. (1999). Structures of a histone deacetylase homologue bound to the TSA and SAHA inhibitors. Nature, 401, 188–193. doi:10.1038/43710
  • Friesner, R. A., Banks, J. L., Murphy, R. B., Halgren, T. A., Klicic, J. J., Mainz, D. T., … Shenkin, P. S. (2004). Glide: A new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. Journal of Medicinal Chemistry, 47, 1739–1749. doi:10.1021/jm0306430
  • Friesner, R. A., Murphy, R. B., Repasky, M. P., Frye, L. L., Greenwood, J. R., Halgren, T. A., … Mainz, D. T. (2006). Extra precision glide: Docking and scoring incorporating a model of hydrophobic enclosure for protein−ligand complexes. Journal of Medicinal Chemistry, 49, 6177–6196. doi:10.1021/jm051256o
  • Gardian, G., Browne, S. E., Choi, D. K., Klivenyi, P., Gregorio, J., Kubilus, J. K., … Beal, M. F. (2005). Neuroprotective effects of phenylbutyrate in the N171-82Q transgenic mouse model of Huntington’s disease. Journal of Biological Chemistry, 280, 556–563. doi:10.1074/jbc.M410210200
  • Goyal, M., Dhanjal, J. K., Goyal, S., Tyagi, C., Hamid, R., & Grover, A. (2014). Development of dual inhibitors against Alzheimer’s disease using fragment-based QSAR and molecular docking. BioMed Research International, 2014, 979606. doi:10.1155/2014/979606
  • Goyal, S., Dhanjal, J. K., Tyagi, C., Goyal, M., & Grover, A. (2014). Novel fragment-based QSAR modeling and combinatorial design of pyrazole-derived CRK3 inhibitors as potent antileishmanials. Chemical Biology & Drug Design, 84, 54–62. doi:10.1111/cbdd.12290
  • Herman, D., Jenssen, K., Burnett, R., Soragni, E., Perlman, S. L., & Gottesfeld, J. M. (2006). Histone deacetylase inhibitors reverse gene silencing in Friedreich’s ataxia. Nature Chemical Biology, 2, 551–558. doi:10.1038/nchembio815
  • Hess, B., & van der Vegt, N. F. (2006). Hydration thermodynamic properties of amino acid analogues: A systematic comparison of biomolecular force fields and water models. The Journal of Physical Chemistry B, 110, 17616–17626. doi:10.1021/jp0641029
  • Hockly, E., Richon, V. M., Woodman, B., Smith, D. L., Zhou, X., Rosa, E., … Bates, G. P. (2003). Suberoylanilide hydroxamic acid, a histone deacetylase inhibitor, ameliorates motor deficits in a mouse model of Huntington’s disease. Proceedings of the National Academy of Sciences of the United States of America, 100, 2041–2046. doi:10.1073/pnas.0437870100
  • Juvale, D. C., Kulkarni, V. V., Deokar, H. S., Wagh, N. K., Padhye, S. B., & Kulkarni, V. M. (2006). 3D-QSAR of histone deacetylase inhibitors: Hydroxamate analogues. Organic & Biomolecular Chemistry, 4, 2858–2868. doi:10.1039/B606365A
  • Katsuno, M., Watanabe, H., Yamamoto, M., & Sobue, G. (2014). Potential therapeutic targets in polyglutamine-mediated diseases. Expert Review of Neurotherapeutics, 14, 1215–1228. doi:10.1586/14737175.2014.956727
  • Kazantsev, A. G., & Thompson, L. M. (2008). Therapeutic application of histone deacetylase inhibitors for central nervous system disorders. Nature Reviews Drug Discovery, 7, 854–868. doi:10.1038/nrd2681
  • Lahm, A., Paolini, C., Pallaoro, M., Nardi, M. C., Jones, P., Neddermann, P., … Gallinari, P. (2007). Unraveling the hidden catalytic activity of vertebrate class IIa histone deacetylases. Proceedings of the National Academy of Sciences of the United States of America, 104, 17335–17340. doi:10.1073/pnas.0706487104
  • Lobera, M., Madauss, K. P., Pohlhaus, D. T., Wright, Q. G., Trocha, M., Schmidt, D. R., … Nolan, M. A. (2013). Selective class IIa histone deacetylase inhibition via a nonchelating zinc-binding group. Nature Chemical Biology, 9, 319–325. doi:10.1038/nchembio.1223
  • Majdzadeh, N., Morrison, B. E. & D’Mello, S. R. (2008). Class IIA HDACs in the regulation of neurodegeneration. Frontiers in Bioscience, 13, 1072–1082. Retrieved from http://www.ncbi.nlm.nih.gov/pmc/articles/PMC269161010.2741/2745
  • Nair, S. B., Teli, M. K., Pradeep, H., & Rajanikant, G. K. (2012). Computational identification of novel histone deacetylase inhibitors by docking based QSAR. Computers in Biology and Medicine, 42, 697–705. doi:10.1016/j.compbiomed.2012.04.001
  • Natarajan, A., Sugumar, S., Bitragunta, S., & Balasubramanyan, N. (2015). Molecular docking studies of (4Z, 12Z)-cyclopentadeca-4, 12-dienone from Grewia hirsuta with some targets related to type 2 diabetes. BMC Complementary and Alternative Medicine, 15, 73–80. doi:10.1186/s12906-015-0588-5
  • Okazawa, H. (2003). Polyglutamine diseases: A transcription disorder? Cellular and Molecular Life Sciences (CMLS), 60, 1427–1439. doi:10.1007/s00018-003-3013-z
  • Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., & Ferrin, T. E. (2004). UCSF Chimera? A visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25, 1605–1612. doi:10.1002/jcc.20084
  • Price, S., Bordogna, W., Bull, R. J., Clark, D. E., Crackett, P. H., Dyke, H. J., … White, A. B. (2007). Identification and optimisation of a series of substituted 5-(1H-pyrazol-3-yl)-thiophene-2-hydroxamic acids as potent histone deacetylase (HDAC) inhibitors. Bioorganic & Medicinal Chemistry Letters, 17, 370–375. doi:10.1016/j.bmcl.2006.10.048
  • Pulst, S. M., Nechiporuk, A., Nechiporuk, T., Gispert, S., Chen, X. N., Lopes-Cendes, I., … Sahba, S. (1996). Moderate expansion of a normally biallelic trinucleotide repeat in spinocerebellar ataxia type 2. Nature Genetics, 14, 269–276. doi:10.1038/ng1196-269
  • Riley, B. E., & Orr, H. T. (2006). Polyglutamine neurodegenerative diseases and regulation of transcription: assembling the puzzle. Genes & Development, 20, 2183–2192. doi:10.1101/gad.1436506
  • Rücker, C., Rücker, G., & Meringer, M. (2007). y-Randomization and its variants in QSPR/QSAR. Journal of Chemical Information and Modeling, 47, 2345–2357. doi:10.1021/ci700157b
  • Sanpei, K., Takano, H., Igarashi, S., Sato, T., Oyake, M., Sasaki, H., … Tsuji, S. (1996). Identification of the spinocerebellar ataxia type 2 gene using a direct identification of repeat expansion and cloning technique, DIRECT. Nature Genetics, 14, 277–284. doi:10.1038/ng1196-277
  • Sastry, G. M., Adzhigirey, M., Day, T., Annabhimoju, R., & Sherman, W. (2013). Protein and ligand preparation: parameters, protocols, and influence on virtual screening enrichments. Journal of Computer-Aided Molecular Design, 27, 221–234. doi:10.1007/s10822-013-9644-8
  • Sehrawat, A., Sinha, S., & Saxena, A. (2015). Helicobacter pylori neutrophil-activating protein: A potential Treg modulator suppressing allergic asthma? Frontiers in Microbiology, 6:493, 1–6. doi:10.3389/fmicb.2015.00493
  • Tambunan, U. S., Bramantya, N., & Parikesit, A. A. (2011). In silico modification of suberoylanilide hydroxamic acid (SAHA) as potential inhibitor for class II histone deacetylase (HDAC). BMC Bioinformatics, 12(Suppl. 13), S23. doi:10.1186/1471-2105-12-S13-S23
  • Tandon, A., & Sinha, S. (2011). Structural insights into the binding of MMP9 inhibitors. Bioinformation, 5, 310–314. doi:10.6026/97320630005310
  • Thomas, E. A. (2014). Involvement of HDAC1 and HDAC3 in the pathology of polyglutamine disorders: Therapeutic implications for selective HDAC1/HDAC3 inhibitors. Pharmaceuticals, 7, 634–661. doi:10.3390/ph7060634
  • Tyagi, C., Gupta, A., Goyal, S., Dhanjal, J., & Grover, A. (2014). Fragment based group QSAR and molecular dynamics mechanistic studies on arylthioindole derivatives targeting the α-β interfacial site of human tubulin. BMC Genomics, 15(Suppl. 9), S3. doi:10.1186/1471-2164-15-S9-S3
  • Van Der Spoel, D., Lindahl, E., Hess, B., Groenhof, G., Mark, A. E., & Berendsen, H. J. (2005). GROMACS: Fast, flexible, and free. Journal of Computational Chemistry, 26, 1701–1718. doi:10.1002/jcc.20291
  • Volmar, C.-H., & Wahlestedt, C. (2015). Histone deacetylases (HDACs) and brain function. Neuroepigenetics, 1, 20–27. doi:10.1016/j.nepig.2014.10.002
  • Wallace, A. C., Laskowski, R. A., & Thornton, J. M. (1995). LIGPLOT: A program to generate schematic diagrams of protein–ligand interactions. Protein Engineering, Design and Selection, 8, 127–134. doi:10.1093/protein/8.2.127
  • Wang, C., Eessalu, T. E., Barth, V. N., Mitch, C. H., Wagner, F. F., Hong, Y., … Hooker, J. M. (2013). Design, synthesis, and evaluation of hydroxamic acid-based molecular probes for in vivo imaging of histone deacetylase (HDAC) in brain. American Journal of Nuclear Medicine and Molecular Imaging, 4, 29–38. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/24380043
  • Wang, X., Wang, H., Xia, Y., Jiang, H., Shen, L., Wang, S., … Tang, B. (2010). A neuropathological study at autopsy of early onset spinocerebellar ataxia 6. Journal of Clinical Neuroscience, 17, 751–755. doi:10.1016/j.jocn.2009.10.007
  • Weber, J. J., Sowa, A. S., Binder, T., & Hubener, J. (2014). From pathways to targets: Understanding the mechanisms behind polyglutamine disease. BioMed Research International, 2014, 701758. doi:10.1155/2014/701758
  • Wold, S., Sjöström, M., & Eriksson, L. (2001). PLS-regression: A basic tool of chemometrics. Chemometrics and Intelligent Laboratory Systems, 58, 109–130. doi:10.1016/S0169-7439(01)00155-1
  • Yamaguchi, H., van Aalten, D. M., Pinak, M., Furukawa, A. & Osman, R. (1998). Essential dynamics of DNA containing a cis.syn cyclobutane thymine dimer lesion. Nucleic Acids Research, 1939–1946. Retrieved from http://www.ncbi.nlm.nih.gov/pmc/articles/PMC14749410.1093/nar/26.8.1939
  • Zhang, L., Fang, H., Zhu, H. W., Wang, Q. & Xu, W. F. (2009). QSAR studies of histone deacetylase (HDAC) inhibitors by CoMFA, CoMSIA, and molecular docking. Drug Discoveries & Therapeutics, 3, 41-48. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/22495476

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.