106
Views
10
CrossRef citations to date
0
Altmetric
Research Articles

Azadirachtin(A) distinctively modulates subdomain 2 of actin – novel mechanism to induce depolymerization revealed by molecular dynamics study

, , &
Pages 2698-2710 | Received 17 May 2015, Accepted 28 Nov 2015, Published online: 03 Jun 2016

References

  • Anuradha, A., Annadurai, R. S., & Shashidhara, L. S. (2007). Actin cytoskeleton as a putative target of the neem limonoid Azadirachtin A. Insect Biochemistry and Molecular Biology, 37, 627–634. doi:10.1016/j.ibmb.2007.03.009
  • Arfeen, M., Patel, R., Khan, T., & Bharatam, P. V. (2015). Molecular dynamics simulation studies of GSK-3β ATP competitive inhibitors: Understanding the factors contributing to selectivity. Journal of Biomolecular Structure and Dynamics, 24, 1–16. doi:10.1080/07391102.2015.1063457
  • Baker, D., & Sali, A. (2001). Protein structure prediction and structural genomics. Science. 5, 294, 93–96. doi:10.1126/science.1065659
  • Balasco, N., Barone, D., & Vitagliano, L. (2015). Structural conversion of the transformer protein RfaH: New insights derived from protein structure prediction and molecular dynamics simulations. Journal of Biomolecular Structure and Dynamics, 24, 1–55. doi:10.1080/07391102.2015.1104263
  • Carlsson, L., Nystrom, L.-E., Sundkvist, I., Markey, F., & Lindberg, U. (1977). Actin polymerizability is influenced by profilin, a low molecular weight protein in non-muscle cells. Journal of Molecular Biology, 115, 465–483.
  • Dalhaimer, P., Pollard, T. D., & Nolen, B. J. (2008). Nucleotide-mediated conformational changes of monomeric actin and Arp3 studied by molecular dynamics simulations. Journal of Molecular Biology, 376, 166–183. doi:10.1016/j.jmb.2007.11.068
  • De La Cruz, E. M., Sweeney, H. L., & Ostap, E. M. (2000). ADP inhibition of myosin V ATPase activity. Biophysical Journal, 79, 1524–1529. doi:10.1016/S0006-3495(00)76403-4
  • Fan, J. R., Zheng, Q. C., Cui, Y. L., Li, W. K., & Zhang, H. X. (2015). Investigation of ligand selectivity in CYP3A7 by molecular dynamics simulations. Journal of Biomolecular Structure and Dynamics, 33, 2360–2367. doi:10.1080/07391102.2015.1054884
  • Giannakakou, P., Gussio, R., Nogales, E., Downing, K. H., Zaharevitz, D., Bollbuck, B., … Fojo, T. (2000). A common pharmacophore for epothilone and taxanes: Molecular basis for drug resistance conferred by tubulin mutations in human cancer cells. Proceedings of the National Academy of Sciences, 97, 2904–2909. doi:10.1073/pnas.040546297
  • Hayward, S., & Berendsen, H. J. C. (1998). Systematic analysis of domain motions in proteins from conformational change: New results on citrate synthase and T4 lysozyme. Proteins: Structure, Function, and Genetics, 30, 144–154. doi:10.1002/(SICI)1097-0134(19980201)30:23.3.CO;2-I
  • Hess, B., Kutzner, C., van der Spoel, D., & Lindahl, E. (2008). GROMACS 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation. Journal of Chemical Theory and Computation, 4, 435–447. doi:10.1021/ct700301q
  • Jacobson, M. (1986). The neem tree: Natural resistance par excellence. American Chemical Society Symposium Series, 296, 220–232. doi:10.1021/bk-1986-0296.ch018
  • Kinosian, H. J., Selden, L. A., Gershman, L. C., & Estes, J. E. (2004). Non-muscle actin filament elongation from complexes of profilin with nucleotide-free actin and divalent cation-free ATP–actin. Biochemistry, 43, 6253–6260. doi:10.1021/bi036117s
  • Kumari, R., Kumar, R., & Lynn, A. (2014). g_mmpbsa – A GROMACS tool for high-throughput MM-PBSA calculations. Journal of Chemical Information and Modeling, 54, 1951–1962. doi:10.1021/ci500020m
  • McCammon, J. A., & Harvey, S. (1987). Dynamics of proteins and nucleic acids (Vol. 44). Cambridge: Cambridge University Press. doi:10.1017/CBO9781139167864
  • Oda, T., Iwasa, M., Aihara, T., Maéda, Y., & Narita, A. (2009). The nature of the globular-to fibrous-actin transition. Nature, 457, 441–445. doi:10.1038/nature07685
  • Oda, T., & Maéda, Y. (2010). Multiple conformations of F-actin. Structure, 18, 761–767. doi:10.1016/j.str.2010.05.009
  • Ostrowski, M., Grzanka, A., & Izdebska, M. (2005). The role of actin in Alzheimer’s disease. Postepy Hig Med Dosw (Online), 3, 224–228.
  • Pfaendtner, J., De La Cruz, E. M., & Voth, G. A. (2010). Actin filament remodeling by actin depolymerization factor/cofilin. Proceedings of the National Academy of Sciences, 107, 7299–7304. doi:10.1073/pnas.0911675107
  • Pollard, T. D., Blanchoin, L., & Mullins, R. D. (2000). Molecular mechanisms controlling actin filament dynamics in nonmuscle cells. Annual Review of Biophysics and Biomolecular Structure, 29, 545–576. doi:10.1146/annurev.biophys.29.1.545
  • Pravin Kumar, R., Manoj, M. N., Kush, A., & Annadurai, R. S. (2007). In silico approach of azadirachtin binding with actins. Insect Biochemistry and Molecular Biology, 37, 635–640. doi:10.1016/j.ibmb.2007.03.010
  • Ray, B. D. Personal communication.
  • Rembold, H. (1989). The azadirachtins – Their potential for insect control. Economic and Medicinal Plant Research, 3, 903–907. doi:10.1016/B978-0-12-730064-1.50007-0
  • Rennebaum, S., & Caflisch, A. (2012). Inhibition of interdomain motion in g-actin by the natural product latrunculin: A molecular dynamics study. Proteins, 80, 1998–2008. doi:10.1002/prot.24088
  • Seeber, M., Felline, A., Raimondi, F., Muff, S., Friedman, R., Rao, F., … Fanelli, F. (2011). Wordom: A user-friendly program for the analysis of molecular structures, trajectories, and free energy surfaces. Journal of Computational Chemistry, 32, 1183–1194. doi:10.1002/jcc.21688
  • Shatsky, M., Nussinov, R., & Wolfson, H. J. (2004). A method for simultaneous alignment of multiple protein structures. Proteins: Structure, Function, and Bioinformatics, 56, 143–156. doi:10.1002/prot.10628
  • Sheterline, P., Clayton, J., & Sparrow, J. C. (1998). Actin. New York, NY: Oxford Univ. Press. ISBN 9780198504634.
  • Sparrow, J. C., Nowak, K. J., Durling, H. J., Beggs, A. H., Wallgren-Pettersson, C., Romero, N., … Laing, N. G. (2003). Muscle disease caused by mutations in the skeletal muscle alpha-actin gene (ACTA1). Neuromuscular Disorders, 13, 519–531. doi:10.1016/S0960-8966(03)00101-9
  • Spector, I., Braet, F., Shochet, N. R., & Bubb, M. R. (1999). New anti-actin drugs in the study of the organization and function of the actin cytoskeleton. Microscopy Research and Technique, 47, 18–37. doi:10.1002/(SICI)1097-0029(19991001)4
  • Splettstoesser, T., Holmes, K. C, Noé, F., & Smith, J. C. (2011) Structural modeling and molecular dynamics simulation of the actin filament. Proteins: Structure, Function, and Bioinformatics, 79, 2033–2043. doi:10.1002/prot.23017
  • van der Spoel, D., Lindahl, E., Hess, B., Groenhof, G., Mark, A. E., et al. (2005). GROMACS: Fast, flexible, and free. Journal of Computational Chemistry, 26, 1701–1718. doi:10.1002/jcc.20291
  • Warthen, J. D., Jr. (1979). Azadirachta indica: A source of insect feeding inhibitors and growth regulators. ARR-NE-: U. S. Dept. Agric. Res. Results.
  • Weber, A., Pennise, C. R., & Pring, M. (1994). DNase I increases the rate constant of depolymerization at the pointed (-) end of actin filaments. Biochemistry, 33, 4780–4786. doi:10.1021/bi00182a005
  • Yamaguchia, H., & Condeelisa J. (2007). Regulation of the actin cytoskeleton in cancer cell migration and invasion. Biochimica et Biophysica Acta, 1773, 642–652. doi:10.1016/j.bbamcr.2006.07.001

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.