328
Views
46
CrossRef citations to date
0
Altmetric
Research Articles

Molecular mechanism of Ras-related protein Rab-5A and effect of mutations in the catalytically active phosphate-binding loop

, , , &
Pages 105-118 | Received 16 Oct 2015, Accepted 16 Dec 2015, Published online: 12 Apr 2016

References

  • Ali, S. A., Hassan, M. I., Islam, A., & Ahmad, F. (2014). A review of methods available to estimate solvent-accessible surface areas of soluble proteins in the folded and unfolded states. Current Protein & Peptide Science, 15, 456–476. doi:CPPS-EPUB-59793[pii]
  • Amir, M., Wahiduzzaman, Dar, M. A., Haque, M. A., Islam, A., Ahmad, F., & Hassan, M. I. (2016). Purification and characterization of Ras related protein, Rab5a from Tinospora cordifolia. International Journal of Biological Macromolecules, 82, 471–479. doi:S0141-8130(15)30079-9[pii]10.1016/j.ijbiomac.2015.10.077
  • Anwer, R., Qumaizi, K. I. A., Shaqha, W. M. A., & Khan, F. I. (2015). From pancreatic to non-pancreatic insulin: A miraculous journey. International Journal of Biological Chemistry, 9, 302–317. doi:10.3923/ijbc.2015.302.317
  • Anwer, K., Sonani, R., Madamwar, D., Singh, P., Khan, F., Bisetty, K., … Hassan, M. I. (2015). Role of N-terminal residues on folding and stability of C-phycoerythrin: Simulation and urea-induced denaturation studies. Journal of Biomolecular Structure and Dynamics, 33, 121–133. doi:10.1080/07391102.2013.855144
  • Bourne, H. R., Sanders, D. A., & McCormick, F. (1991). The GTPase superfamily: Conserved structure and molecular mechanism. Nature, 349, 117–127. doi:10.1038/349117a0
  • Burton, J. L., Burns, M. E., Gatti, E., Augustine, G. J., & De Camilli, P. (1994). Specific interactions of Mss4 with members of the Rab GTPase subfamily. EMBO Journal, 13, 5547–5558.
  • Carroll, K. S., Hanna, J., Simon, I., Krise, J., Barbero, P., & Pfeffer, S. R. (2001). Role of Rab9 GTPase in facilitating receptor recruitment by TIP47. Science, 292, 1373–1376. doi:10.1126/science.1056791
  • Celej, M. S., Montich, G. G., & Fidelio, G. D. (2003). Protein stability induced by ligand binding correlates with changes in protein flexibility. Protein Science, 12, 1496–1506. doi:10.1110/ps.0240003
  • Collaborative Computational Project, N. (1994). The CCP4 suite: Programs for protein crystallography. Acta Crystallographica Section D Biological Crystallography, 50, 760–763. doi:10.1107/S0907444994003112
  • Deacon, S. W., Serpinskaya, A. S., Vaughan, P. S., Lopez Fanarraga, M., Vernos, I., Vaughan, K. T., & Gelfand, V. I. (2003). Dynactin is required for bidirectional organelle transport. The Journal of Cell Biology, 160, 297–301. doi:10.1083/jcb.200210066
  • Delprato, A., Merithew, E., & Lambright, D. G. (2004). Structure, exchange determinants, and family-wide rab specificity of the tandem helical bundle and Vps9 domains of rabex-5. Cell, 118, 607–617. doi:10.1016/j.cell.2004.08.009S0092867404007913[pii]
  • Eathiraj, S., Pan, X., Ritacco, C., & Lambright, D. G. (2005). Structural basis of family-wide Rab GTPase recognition by rabenosyn-5. Nature, 436, 415–419. doi:nature03798[pii]10.1038/nature03798
  • Fouda, M. A., Hassan, M. I., Al-Daly, A. G., & Hammad, K. M. (2001). Effect of midgut bacteria of Culex pipiens L. on digestion and reproduction. Journal of the Egyptian Society of Parasitology, 31, 767–780.
  • Gramany, V., Iqbal Khan, F., Govender, A., Bisetty, K., Singh, S., & Permaul, K. (2015). Cloning, expression and molecular dynamics simulations of a xylosidase obtained from Thermomyces lanuginosus. Journal of Biomolecular Structure Dynamics, 19, 1–12. doi:10.1080/07391102.2015.1089186
  • Hassan, M. I., Bilgrami, S., Kumar, V., Singh, N., Yadav, S., Kaur, P., & Singh, T. P. (2008). Crystal structure of the novel complex formed between zinc α2-glycoprotein (ZAG) and prolactin-inducible protein (PIP) from human seminal plasma. Journal of Molecular Biology, 384, 663–672. doi:10.1016/j.jmb.2008.09.072S0022-2836(08)01224-2[pii]
  • Hassan, M. I., Kumar, V., Singh, T. P., & Yadav, S. (2007). Structural model of human PSA: A target for prostate cancer therapy. Chemical Biology & Drug Design, 70, 261–267. doi:JPP553[pii]10.1111/j.1747-0285.2007.00553.x
  • Hassan, M. I., Kumar, V., Somvanshi, R. K., Dey, S., Singh, T. P., & Yadav, S. (2007). Structure-guided design of peptidic ligand for human prostate specific antigen. Journal of Peptide Science, 13, 849–855. doi:10.1002/psc.911
  • Hassan, M. I., Waheed, A., Grubb, J. H., Klei, H. E., Korolev, S., & Sly, W. S. (2013). High resolution crystal structure of human β-glucuronidase reveals structural basis of lysosome targeting. Plos One, 8, e79687. doi:10.1371/journal.pone.0079687PONE-D-13-24802[pii]
  • Hoda, N., Naz, H., Jameel, E., Shandilya, A., Dey, S., Hassan, M. I., … Jayaram, B. (2015). Curcumin specifically binds to the human calcium-calmodulin-dependent protein kinase IV: Fluorescence and molecular dynamics simulation studies. Journal of Biomolecular Structure and Dynamics, 5, 1–13. doi:10.1080/07391102.2015.1046934
  • Humphrey, W., Dalke, A., & Schulten, K. (1996). VMD: Visual molecular dynamics. Journal of Molecular Graphics, 14, 27–38.
  • Idrees, D., Prakash, A., Haque, M. A., Islam, A., Ahmad, F., & Hassan, M. I. (2015). Spectroscopic and MD simulation studies on unfolding processes of mitochondrial carbonic anhydrase VA induced by urea. Journal of Biomolecular Structure and Dynamics, 30, 1–37. doi:10.1080/07391102.2015.1100552
  • Kaplan, W., & Littlejohn, T. G. (2001). Swiss-PDB viewer (deep view). Briefings in Bioinformatics, 2, 195–197.10.1093/bib/2.2.195
  • Khan, F. I., Bisetty, K., Singh, S., Permaul, K., & Hassan, M. I. (2015). Chitinase from Thermomyces lanuginosus SSBP and its biotechnological applications. Extremophiles, 19, 1055–1066. doi:10.1007/s00792-015-0792-8
  • Khan, F. I., Govender, A., Permaul, K., Singh, S., & Bisetty, K. (2015). Thermostable chitinase II from Thermomyces lanuginosus SSBP: Cloning, structure prediction and molecular dynamics simulations. Journal of Theoretical Biology, 374, 107–114. doi:10.1016/j.jtbi.2015.03.035
  • Khan, P., Parkash, A., Islam, A., Ahmad, F., & Hassan, M. I. (2016). Molecular basis of the structural stability of hemochromatosis factor E: A combined molecular dynamic simulation and GdmCl-induced denaturation study. Biopolymers, 105, 133–142. doi:10.1002/bip.22760.
  • Khan, F. I., Shahbaaz, M., Bisetty, K., Waheed, A., Sly, W. S., Ahmad, F., & Hassan, M. I. (2016). Large scale analysis of the mutational landscape in beta-glucuronidase: A major player of mucopolysaccharidosis type VII. Gene, 576, 36–44. doi:S0378-1119(15)01171-3[pii]
  • Kumwenda, B., Litthauer, D., Tastan Bishop, O. T., & Reva, O. (2013). Analysis of protein thermostability enhancing factors in industrially important thermus bacteria species. Evolutionary Bioinformatics, 9, 327–342. doi:10.4137/EBO.S12539ebo-9-2013-327[pii]
  • Li, G., & Liang, Z. (2001). Phosphate-binding loop and Rab GTPase function: mutations at Ser29 and Ala30 of Rab5 lead to loss-of-function as well as gain-of-function phenotype. Biochemical Journal, 355, 681–689.10.1042/bj3550681
  • Li, G., & Stahl, P. D. (1993). Structure-function relationship of the small GTPase rab5. Journal of Biological Chemistry, 268, 24475–24480.
  • Liang, Z., Mather, T., & Li, G. (2000). GTPase mechanism and function: New insights from systematic mutational analysis of the phosphate-binding loop residue Ala30 of Rab5. Biochemical Journal, 346, 501–508.10.1042/bj3460501
  • Mazola, Y., Guirola, O., Palomares, S., Chinea, G., Menendez, C., Hernandez, L., & Musacchio, A. (2015). A comparative molecular dynamics study of thermophilic and mesophilic beta-fructosidase enzymes. Journal of Molecular Modeling, 21, 228. doi:10.1007/s00894-015-2772-4
  • McLauchlan, H., Newell, J., Morrice, N., Osborne, A., West, M., & Smythe, E. (1998). A novel role for Rab5-GDI in ligand sequestration into clathrin-coated pits. Current Biology, 8, 34–45. doi:S0960-9822(98)70018-1[pii]
  • Naiyer, A., Hassan, M. I., Islam, A., Sundd, M., & Ahmad, F. (2015). Structural characterization of MG and pre-MG states of proteins by MD simulations, NMR, and other techniques. Journal of Biomolecular Structure and Dynamics, 33, 2267–2284. doi:10.1080/07391102.2014.999354
  • Naz, F., Singh, P., Islam, A., Ahmad, F., & Imtaiyaz Hassan, M. I. (2015). Human microtubule affinity-regulating kinase 4 is stable at extremes of pH. Journal of Biomolecular Structure and Dynamics, 21, 1–11. doi:10.1080/07391102.2015.1074942
  • Norberto de Souza, O., & Ornstein, R. L. (1999). Molecular dynamics simulations of a protein–protein dimer: Particle-mesh Ewald electrostatic model yields far superior results to standard cutoff model. Journal of Biomolecular Structure and Dynamics, 16, 1205–1218. doi:10.1080/07391102.1999.10508328
  • Palmer, R. A., & Niwa, H. (2003). X-ray crystallographic studies of protein-ligand interactions. Biochemical Society Transactions, 31, 973–979. doi:10.1042/
  • Pereira-Leal, J. B., & Seabra, M. C. (2000). The mammalian Rab family of small GTPases: Definition of family and subfamily sequence motifs suggests a mechanism for functional specificity in the Ras superfamily. Journal of Molecular Biology, 301, 1077–1087. doi:10.1006/jmbi.2000.4010S0022-2836(00)94010-5[pii]
  • Pfeffer, S. R. (2005). Structural clues to Rab GTPase functional diversity. Journal of Biological Chemistry, 280, 15485–15488. doi:R500003200[pii]10.1074/jbc.R500003200
  • Pires, D. E., Ascher, D. B., & Blundell, T. L. (2014a). DUET: A server for predicting effects of mutations on protein stability using an integrated computational approach. Nucleic Acids Research, 42, W314–W319. doi:10.1093/nar/gku411
  • Pires, D. E., Ascher, D. B., & Blundell, T. L. (2014b). mCSM: Predicting the effects of mutations in proteins using graph-based signatures. Bioinformatics, 30, 335–342. doi:10.1093/bioinformatics/btt691
  • Rhodes, D. R., Kalyana-Sundaram, S., Mahavisno, V., Varambally, R., Yu, J., Briggs, B. B., … Chinnaiyan, A. M. (2007). Oncomine 3.0: Genes, pathways, and networks in a collection of 18,000 cancer gene expression profiles. Neoplasia, 9, 166–180.10.1593/neo.07112
  • Schüttelkopf, A. W., & van Aalten, D. M. (2004). PRODRG: A tool for high-throughput crystallography of protein–ligand complexes. Acta Crystallographica Section D Biological Crystallography, 60, 1355–1363. doi:10.1107/S0907444904011679
  • Seeliger, D., & de Groot, B. L. (2010). Ligand docking and binding site analysis with PyMOL and Autodock/Vina. Journal of Computer-Aided Molecular Design, 24, 417–422. doi:10.1007/s10822-010-9352-6
  • Shrake, A., & Ross, P. D. (1992). Origins and consequences of ligand-induced multiphasic thermal protein denaturation. Biopolymers, 32, 925–940. doi:10.1002/bip.360320804
  • Somsel Rodman, J., & Wandinger-Ness, A. (2000). Rab GTPases coordinate endocytosis. Journal of Cell Science, 113, 183–192.
  • Stephens, D. E., Khan, F. I., Singh, P., Bisetty, K., Singh, S., & Permaul, K. (2014). Creation of thermostable and alkaline stable xylanase variants by DNA shuffling. Journal of Biotechnology, 187, 139–146. doi:10.1016/j.jbiotec.2014.07.446
  • Van Der Spoel, D., Lindahl, E., Hess, B., Groenhof, G., Mark, A. E., & Berendsen, H. J. (2005). GROMACS: Fast, flexible, and free. Journal of Computational Chemistry, 26, 1701–1718. doi:10.1002/jcc.20291
  • Willard, L., Ranjan, A., Zhang, H., Monzavi, H., Boyko, R. F., Sykes, B. D., & Wishart, D. S. (2003). VADAR: A web server for quantitative evaluation of protein structure quality. Nucleic Acids Research, 31, 3316–3319.10.1093/nar/gkg565
  • Worth, C. L., Preissner, R., & Blundell, T. L. (2011). SDM – A server for predicting effects of mutations on protein stability and malfunction. Nucleic Acids Research, 39, W215–W222. doi:10.1093/nar/gkr363
  • Zhu, G., Liu, J., Terzyan, S., Zhai, P., Li, G., & Zhang, X. C. (2003). High resolution crystal structures of human Rab5a and five mutants with substitutions in the catalytically important phosphate-binding loop. Journal of Biological Chemistry, 278, 2452–2460. doi:10.1074/jbc.M211042200

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.