292
Views
42
CrossRef citations to date
0
Altmetric
Research Articles

Exploring the thermal stability and activity of α-chymotrypsin in the presence of spermine

, &
Pages 435-448 | Received 21 Nov 2015, Accepted 26 Jan 2016, Published online: 09 May 2016

References

  • Abazari, O., Shafaei, Z., Divsalar, A., Eslami-Moghadam, M., Ghalandari, B., & Saboury, A. A. (2015). Probing the biological evaluations of a new designed Pt(II) complex using spectroscopic and theoretical approaches: Human hemoglobin as a target. Journal of Biomolecular Structure and Dynamics, 33, 1–9.10.1080/07391102.2015.1071280
  • Andrea Bellova, E. B., Koneracka, M., Kopcansky, P., Valle, F., Tomasovicova, N., Timko, M., … Gazova, Z. (2010). Effect of Fe3O4 magnetic nanoparticles on lysozyme amyloid aggregation. Nanotechnology, 21(6), 1–7.
  • Attri, P., & Venkatesu, P. (2013). Exploring the thermal stability of α-chymotrypsin in protic ionic liquids. Process Biochemistry, 48, 462–470.10.1016/j.procbio.2013.02.006
  • Attri, P., Venkatesu, P., & Lee, M.-J. (2010). Influence of osmolytes and denaturants on the structure and enzyme activity of α-chymotrypsin. The Journal of Physical Chemistry B, 114, 1471–1478.10.1021/jp9092332
  • Berendsen, H. J., Postma, J. P., van Gunsteren, W. F., & Hermans, J. (1981). Interaction models for water in relation to protein hydration. In Berendsen, H. J., Postma, J. P., van Gunsteren, W. F., & Hermans, J (Eds.), Intermolecular forces (pp. 331–342). The Netherlands: Springer.
  • Blevins, R. A., & Tulinsky, A. (1985). The refinement and the structure of the dimer of alpha-chymotrypsin at 1.67-A resolution. Journal of Biological Chemistry, 260, 4264–4275.
  • Brenner, B., Schoenberg, M., Chalovich, J., Greene, L., & Eisenberg, E. (1982). Evidence for cross-bridge attachment in relaxed muscle at low ionic strength. Proceedings of the National Academy of Sciences, 79, 7288–7291.10.1073/pnas.79.23.7288
  • Celej, M., D’andrea, M., Campana, P., Fidelio, G., & Bianconi, M. (2004). Superactivity and conformational changes on alpha-chymotrypsin upon interfacial binding to cationic micelles. Biochemical Journal, 378, 1059–1066.10.1042/bj20031536
  • Darden, T., York, D., & Pedersen, L. (1993). Particle mesh Ewald: An N⋅log(N) method for Ewald sums in large systems. The Journal of Chemical Physics, 98, 10089–10092.10.1063/1.464397
  • De Diego, T., Lozano, P., Gmouh, S., Vaultier, M., & Iborra, J. L. (2004). Fluorescence and CD spectroscopic analysis of the α-chymotrypsin stabilization by the ionic liquid, 1-ethyl-3-methylimidazolium bis [(trifluoromethyl) sulfonyl] amide. Biotechnology and Bioengineering, 88, 916–924.10.1002/(ISSN)1097-0290
  • Delavari, B., Saboury, A. A., Atri, M. S., Ghasemi, A., Bigdeli, B., Khammari, A., … Goliaei, B. (2015). Alpha-lactalbumin: A new carrier for vitamin D3 food enrichment. Food Hydrocolloids, 45, 124–131.10.1016/j.foodhyd.2014.10.017
  • Ghalandari, B., Divsalar, A., Eslami-Moghadam, M., Saboury, A. A., Haertlé, T., Amanlou, M., & Parivar, K. (2015). Probing of the interaction between β-lactoglobulin and the anticancer drug oxaliplatin. Applied Biochemistry and Biotechnology, 175, 974–987.10.1007/s12010-014-1341-0
  • Ghalandari, B., Divsalar, A., Saboury, A. A., & Parivar, K. (2015). β-Lactoglobulin nanoparticle as a chemotherapy agent carrier for oral drug delivery system. Journal of the Iranian Chemical Society, 12, 613–619.10.1007/s13738-014-0519-2
  • Halim, A. A. A., Kadir, H. A., & Tayyab, S. (2008). Bromophenol blue binding as a probe to study urea and guanidine hydrochloride denaturation of bovine serum albumin. Journal of Biochemistry, 144, 33–38.10.1093/jb/mvn036
  • Hegedűs, I., & Nagy, E. (2009). Improvement of chymotrypsin enzyme stability as single enzyme nanoparticles. Chemical Engineering Science, 64, 1053–1060.10.1016/j.ces.2008.10.063
  • Hu, Y.-J., Liu, Y., Zhang, L.-X., Zhao, R.-M., & Qu, S.-S. (2005). Studies of interaction between colchicine and bovine serum albumin by fluorescence quenching method. Journal of Molecular Structure, 750, 174–178.10.1016/j.molstruc.2005.04.032
  • Iyer, P. V., & Ananthanarayan, L. (2008). Enzyme stability and stabilization – Aqueous and non-aqueous environment. Process Biochemistry, 43, 1019–1032.10.1016/j.procbio.2008.06.004
  • Jolois, O., Peulen, O., Collin, S., Simons, M., Dandrifosse, G., & Heinen, E. (2002). Spermine induces precocious development of the spleen in mice. Experimental Physiology, 87, 69–75.10.1113/eph8702277
  • Kathiravan, A., Asha Jhonsi, M., & Renganathan, R. (2011). Photoinduced interaction of colloidal TiO2 nanoparticles with lysozyme: Evidences from spectroscopic studies. Journal of Luminescence, 131, 1975–1981.10.1016/j.jlumin.2011.04.004
  • Kim, J., Grate, J. W., & Wang, P. (2006). Nanostructures for enzyme stabilization. Chemical Engineering Science, 61, 1017–1026.10.1016/j.ces.2005.05.067
  • Kita, Y., Arakawa, T., Lin, T.-Y., & Timasheff, S. N. (1994). Contribution of the surface free energy perturbation to protein–solvent interactions. Biochemistry, 33, 15178–15189.10.1021/bi00254a029
  • Kudou, M., Shiraki, K., Fujiwara, S., Imanaka, T., & Takagi, M. (2003). Prevention of thermal inactivation and aggregation of lysozyme by polyamines. European Journal of Biochemistry, 270, 4547–4554.10.1046/j.1432-1033.2003.03850.x
  • Kumar, A., Attri, P., & Venkatesu, P. (2012). Effect of polyols on the native structure of α-chymotrypsin: A comparable study. Thermochimica Acta, 536, 55–62.10.1016/j.tca.2012.02.027
  • Kumar, A., Rani, A., & Venkatesu, P. (2015). A comparative study of the effects of the Hofmeister series anions of the ionic salts and ionic liquids on the stability of α-chymotrypsin. New Journal of Chemistry, 39, 938–952.10.1039/C4NJ01596G
  • Kumar, A., & Venkatesu, P. (2012). Overview of the stability of α-chymotrypsin in different solvent media. Chemical Reviews, 112, 4283–4307.10.1021/cr2003773
  • Lakowicz, J. R., & Weber, G. (1973). Quenching of fluorescence by oxygen. Probe for structural fluctuations in macromolecules. Biochemistry, 12, 4161–4170.10.1021/bi00745a020
  • Li, H., Pu, J., Wang, Y., Liu, C., Yu, J., Li, T., & Wang, R. (2013). Comparative study of the binding of trypsin with bifendate and analogs by spectrofluorimetry. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 115, 1–11.
  • Liu, X., Shang, L., Jiang, X., Dong, S., & Wang, E. (2006). Conformational changes of β-lactoglobulin induced by anionic phospholipid. Biophysical Chemistry, 121, 218–223.10.1016/j.bpc.2005.12.015
  • Liu, Y., & Liu, R. (2012). The interaction of α-chymotrypsin with one persistent organic pollutant (dicofol): Spectroscope and molecular modeling identification. Food and Chemical Toxicology, 50, 3298–3305.10.1016/j.fct.2012.06.037
  • Mateo, C., Palomo, J. M., Fernandez-Lorente, G., Guisan, J. M., & Fernandez-Lafuente, R. (2007). Improvement of enzyme activity, stability and selectivity via immobilization techniques. Enzyme and Microbial Technology, 40, 1451–1463.10.1016/j.enzmictec.2007.01.018
  • Miller, D. D., Horbett, T. A., & Teller, D. C. (1971). Reevaluation of the activation of bovine chymotrypsinogen A. Biochemistry, 10, 4641–4648.10.1021/bi00801a008
  • Min, J., Meng-Xia, X., Dong, Z., Yuan, L., Xiao-Yu, L., & Xing, C. (2004). Spectroscopic studies on the interaction of cinnamic acid and its hydroxyl derivatives with human serum albumin. Journal of Molecular Structure, 692, 71–80.10.1016/j.molstruc.2004.01.003
  • Möller, M., & Denicola, A. (2002). Protein tryptophan accessibility studied by fluorescence quenching. Biochemistry and Molecular Biology Education, 30, 175–178.10.1002/(ISSN)1539-3429
  • Ong, H. N., Arumugam, B., & Tayyab, S. (2009). Succinylation-induced conformational destabilization of lysozyme as studied by guanidine hydrochloride denaturation. Journal of Biochemistry, 146, 895–904.10.1093/jb/mvp136
  • Pletnev, V. Z., Zamolodchikova, T. S., Pangborn, W. A., & Duax, W. L. (2000). Crystal structure of bovine duodenase, a serine protease, with dual trypsin and chymotrypsin-like specificities. Proteins: Structure, Function, and Genetics, 41, 8–16.10.1002/(ISSN)1097-0134
  • Qi, Z.-D., Zhou, B., Qi, X., Chuan, S., Liu, Y., & Dai, J. (2008). Interaction of rofecoxib with human serum albumin: Determination of binding constants and the binding site by spectroscopic methods. Journal of Photochemistry and Photobiology A: Chemistry, 193, 81–88.10.1016/j.jphotochem.2007.06.011
  • Rezaei-Ghaleh, N., Ebrahim-Habibi, A., Moosavi-Movahedi, A. A., & Nemat-Gorgani, M. (2007). Effect of polyamines on the structure, thermal stability and 2, 2, 2-trifluoroethanol-induced aggregation of α-chymotrypsin. International Journal of Biological Macromolecules, 41, 597–604.10.1016/j.ijbiomac.2007.07.018
  • Saboury, A. (2009). Enzyme inhibition and activation: A general theory. Journal of the Iranian Chemical Society, 6, 219–229.10.1007/BF03245829
  • Saboury, A., & Karbassi, F. (2000). Thermodynamic studies on the interaction of calcium ions with alpha-amylase. Thermochimica Acta, 362, 121–129.10.1016/S0040-6031(00)00579-7
  • Saboury, A., & Moosavi-Movahedi, A. (1995). Derivation of the thermodynamic parameters involved in the elucidation of protein thermal profiles. Biochemical Education, 23, 164–167.10.1016/0307-4412(95)00049-9
  • Saeidifar, M., Mansouri-Torshizi, H., & Akbar Saboury, A. (2015). Biophysical study on the interaction between two palladium(II) complexes and human serum albumin by multispectroscopic methods. Journal of Luminescence, 167, 391–398.10.1016/j.jlumin.2015.07.016
  • Schüttelkopf, A. W., & Van Aalten, D. M. (2004). PRODRG: A tool for high-throughput crystallography of protein–ligand complexes. Acta Crystallographica Section D: Biological Crystallography, 60, 1355–1363.10.1107/S0907444904011679
  • Shareghi, B., Farhadian, S., Zamani, N., Salavati-Niasari, M., Moshtaghi, H., & Gholamrezaei, S. (2015). Investigation the activity and stability of lysozyme on presence of magnetic nanoparticles. Journal of Industrial and Engineering Chemistry, 21, 862–867.10.1016/j.jiec.2014.04.024
  • Sheldon, R. A., & van Pelt, S. (2013). Enzyme immobilisation in biocatalysis: Why, what and how. Chemical Society Reviews, 42, 6223–6235.10.1039/C3CS60075K
  • Simon, L., Kotormán, M., Garab, G., & Laczkó, I. (2002). Effects of polyhydroxy compounds on the structure and activity of α-chymotrypsin. Biochemical and Biophysical Research Communications, 293, 416–420.10.1016/S0006-291X(02)00246-2
  • Sułkowska, A. (2002). Interaction of drugs with bovine and human serum albumin. Journal of Molecular Structure, 614, 227–232.10.1016/S0022-2860(02)00256-9
  • Tabassum, S., Al-Asbahy, W. M., Afzal, M., & Arjmand, F. (2012). Synthesis, characterization and interaction studies of copper based drug with human serum albumin (HSA): Spectroscopic and molecular docking investigations. Journal of Photochemistry and Photobiology B: Biology, 114, 132–139.10.1016/j.jphotobiol.2012.05.021
  • Tian, J., Wei, S., Zhao, Y., Liu, R., & Zhao, S. (2010). Studies on interaction between CdTe quantum dots and α-chymotrypsin by molecular spectroscopy. Journal of Chemical Sciences, 122, 391–400.10.1007/s12039-010-0044-5
  • Tischer, W., & Wedekind, F. (1999). Immobilized enzymes: Methods and applications. In W.-D. Fessner (Ed.), Biocatalysis – from discovery to application (pp. 95–126). Berlin: Springer.
  • Triantafyllou, A. Ö., Wehtje, E., Adlercreutz, P., & Mattiasson, B. (1997). How do additives affect enzyme activity and stability in nonaqueous media? Biotechnology and Bioengineering, 54, 67–76.10.1002/(ISSN)1097-0290
  • Tulinsky, A., & Blevins, R. A. (1987). Structure of a tetrahedral transition state complex of alpha-chymotrypsin dimer at 1.8-A resolution. Journal of Biological Chemistry, 262, 7737–7743.
  • Van Der Spoel, D., Lindahl, E., Hess, B., Groenhof, G., Mark, A. E., & Berendsen, H. J. (2005). GROMACS: Fast, flexible, and free. Journal of Computational Chemistry, 26, 1701–1718.10.1002/(ISSN)1096-987X
  • Venkatesu, P., Lee, M.-J., & Lin, H.-M. (2007). Thermodynamic characterization of the osmolyte effect on protein stability and the effect of GdnHCl on the protein denatured state. The Journal of Physical Chemistry B, 111, 9045–9056.10.1021/jp0701901
  • Wang, S., Zhou, Y., Yang, S., & Ding, B. (2008). Growing hyperbranched polyglycerols on magnetic nanoparticles to resist nonspecific adsorption of proteins. Colloids and Surfaces B: Biointerfaces, 67, 122–126.10.1016/j.colsurfb.2008.08.009
  • Woody, R. W., & Dunker, A. K. (1996). Aromatic and cystine side-chain circular dichroism in proteins. In G. D. Fasman (Ed.), Circular dichroism and the conformational analysis of biomolecules (pp. 109–157). New York: Springer.
  • Xie, M.-X., Long, M., Liu, Y., Qin, C., & Wang, Y.-D. (2006). Characterization of the interaction between human serum albumin and morin. Biochimica et Biophysica Acta (BBA)-General Subjects, 1760, 1184–1191.
  • Xu, J., Sun, J., Wang, Y., Sheng, J., Wang, F., & Sun, M. (2014). Application of iron magnetic nanoparticles in protein immobilization. Molecules, 19, 11465–11486.10.3390/molecules190811465
  • Yang, Q., Liang, J., & Han, H. (2009). Probing the interaction of magnetic iron oxide nanoparticles with bovine serum albumin by spectroscopic techniques. The Journal of Physical Chemistry B, 113, 10454–10458.10.1021/jp904004w
  • Yue, Y., Chen, X., Qin, J., & Yao, X. (2009). Spectroscopic investigation on the binding of antineoplastic drug oxaliplatin to human serum albumin and molecular modeling. Colloids and Surfaces B: Biointerfaces, 69, 51–57.10.1016/j.colsurfb.2008.10.016
  • Zhang, M.-F., Xu, Z.-Q., Ge, Y.-S., Jiang, F.-L., & Liu, Y. (2012). Binding of fullerol to human serum albumin: Spectroscopic and electrochemical approach. Journal of Photochemistry and Photobiology B: Biology, 108, 34–43.10.1016/j.jphotobiol.2011.12.006

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.