660
Views
14
CrossRef citations to date
0
Altmetric
Research Articles

Atomistic molecular dynamics simulations of typical and atypical antipsychotic drugs at the dopamine D2 receptor (D2R) elucidates their inhibition mechanism

, &
Pages 738-754 | Received 07 Oct 2015, Accepted 24 Feb 2016, Published online: 06 Apr 2016

References

  • Ablordeppey, S. Y., Altundas, R., Bricker, B., Zhu, X. Y., Kumar, E. V. K. S., Jackson, T., … Roth, B. L. (2008). Identification of a butyrophenone analog as a potential atypical antipsychotic agent: 4-[4-(4-Chlorophenyl)-1,4-diazepan-1-yl]-1-(4-fluorophenyl)butan-1-one. Bioorganic & Medicinal Chemistry, 16, 7291–7301.
  • Apweiler, R. (2009). The universal protein resource (UniProt) in 2010. Nucleic Acids Research, 38, D142–D148. doi: 10.1093/nar/gkp84.
  • Arinami, T., Gao, M., Hamaguchi, H., & Toru, M. (1997). A functional polymorphism in the promoter region of the dopamine D2 receptor gene is associated with schizophrenia. Human Molecular Genetics, 6, 577–582. doi:10.1093/hmg/6.4.577
  • Bas, D. C., Rogers, D. M., & Jensen, J. H. (2008). Very fast prediction and rationalization of pKa values for protein–ligand complexes. Proteins: Structure, Function and Genetics, 73, 765–783. doi:10.1002/prot.22102
  • Borroto-Escuela, D. O., Romero-Fernandez, W., Narvaez, M., Oflijan, J., Agnati, L. F., & Fuxe, K. (2014). Hallucinogenic 5-HT2AR agonists LSD and DOI enhance dopamine D2R protomer recognition and signaling of D2-5-HT2A heteroreceptor complexes. Biochemical and Biophysical Research Communications, 443, 278–284. doi:10.1016/j.bbrc.2013.11.104
  • Bussi, G., & Parrinello, M. (2007). Accurate sampling using Langevin dynamics. Physical Review E – Statistical, Nonlinear, and Soft Matter Physics, 75(5), 1–7. doi:10.1103/PhysRevE.75.056707
  • Chien, E. Y. T., Liu, W., Zhao, Q., Katritch, V., Han, G. W., Hanson, M. A., … Stevens, R. C. (2010). Structure of the human dopamine D3 receptor in complex with a D2/D3 selective antagonist. Science, 330, 1091–1095. doi:10.1126/science.1197410
  • Christopoulos, A., & Kenakin, T. (2002). G protein-coupled receptor allosterism and complexing. Pharmacological Reviews, 54, 323–374. doi:10.1124/pr.54.2.323
  • Conn, P. J., Christopoulos, A., & Lindsley, C. W. (2009). Allosteric modulators of GPCRs: A novel approach for the treatment of CNS disorders. Nature Reviews. Drug Discovery, 8, 41–54. doi:10.1038/nrd2760
  • Darden, T., York, D., & Pedersen, L. (1993). Particle mesh Ewald: An N log(N) method for Ewald sums in large systems. The Journal of Chemical Physics, 98, 10089–10092. doi:10.1063/1.464397
  • Desmond Molecular Dynamics System. 2009 (Version 2.2). New York, NY: D.E. Shaw Research.
  • Dijkstra, D., Rodenhuis, N., Vermeulen, E. S., Pugsley, T. A., Wise, L. D., & Wikström, H. V. (2002). Further characterization of structural requirements for ligands at the dopamine D(2) and D(3) receptor: Exploring the thiophene moiety. Journal of Medicinal Chemistry, 45, 3022–3031.10.1021/jm001015a
  • Dilly, S., & Liégeois, J.-F. (2011). Interaction of clozapine and its nitrenium ion with rat D2 dopamine receptors: In vitro binding and computational study. Journal of Computer-Aided Molecular Design, 25, 163–169. doi:10.1007/s10822-010-9407-8
  • Durdagi, S., Papadopoulos, M. G., Zoumpoulakis, P. G., Koukoulitsa, C., & Mavromoustakos, T. (2010). A computational study on cannabinoid receptors and potent bioactive cannabinoid ligands: homology modeling, docking, de novo drug design and molecular dynamics analysis. Molecular Diversity, 14, 257–276.
  • Durdagi, S., Salmas, R. E., Stein, M., Yurtsever, M., & Seeman, P. (2015). Binding interactions of dopamine and apomorphine in D2High and D2Low states of human dopamine D2 receptor (D2R) using computational and experimental techniques. ACS Chemical Neuroscience, 17 ,185–195. doi:10.1021/acschemneuro
  • Durdagi, S., Subbotina, J., Lees-Miller, J., Guo, J., Duff, H. J., & Noskov, S. Y. (2010). Insights into the molecular mechanism of hERG1 channel activation and blockade by drugs. Current Medicinal Chemistry, 17, 3514–3532.
  • Ekhteiari Salmas, R., Mestanoglu, M., Unlu, A., Yurtsever, M., & Durdagi, S. (2016). Mutated form (G52E) of inactive diphtheria toxin CRM197: Molecular simulations clearly display effect of the mutation to NAD binding. Journal of Biomolecular Structure and Dynamics. doi:10.1080/07391102.2015.1119060.
  • Farid, R., Day, T., Friesner, R. A., & Pearlstein, R. A. (2006). New insights about HERG blockade obtained from protein modeling, potential energy mapping, and docking studies. Bioorganic and Medicinal Chemistry, 14, 3160–3173. doi:10.1016/j.bmc.2005.12.032
  • Fotakis, C., Gega, S., Siapi, E., Potamitis, C., Viras, K., Moutevelis-Minakakis, P., … Mavromoustakos, T. (2010). Interactions at the bilayer interface and receptor site induced by the novel synthetic pyrrolidinone analog MMK3. Biochimica et Biophysica Acta, 1798, 422–432.
  • Fuxe, K., Borroto-Escuela, D. O., Tarakanov, A. O., Romero-Fernandez, W., Ferraro, L., Tanganelli, S., … Agnati, L. F. (2014). Dopamine D2 heteroreceptor complexes and their receptor–receptor interactions in ventral striatum: Novel targets for antipsychotic drugs. Progress in Brain Research, 211, 113–139. doi:10.1016/B978-0-444-63425-2.00005-2
  • Fuxe, K., Manger, P., Genedani, S., & Agnati, L. (2006). The nigrostriatal DA pathway and Parkinson’s disease. Journal of Neural Transmission. Supplementum, 70, 71–83.10.1007/978-3-211-45295-0
  • Greengard, P. (2001). The neurobiology of dopamine signaling. Bioscience Reports, 21, 247–269. doi:10.1023/A:1013205230142
  • Grubmüller, H., & Groll, V. (2013). Retrieved from http://www.mpibpc.mpg.de/home/grubmueller/downloads/solvate/index.html
  • Hollenstein, K., De Graaf, C., Bortolato, A., Wang, M. W., Marshall, F. H., & Stevens, R. C. (2014). Insights into the structure of class B GPCRs. Trends in Pharmacological Sciences, 35, 12–22. doi:10.1016/j.tips.2013.11.001
  • Hoover, W. G. (1985). Canonical dynamics: Equilibrium phase-space distributions. Physical Review A, 31, 1695–1697. doi:10.1103/PhysRevA.31.1695
  • Huang, J., & Mackerell, A. D. (2013). CHARMM36 all-atom additive protein force field: Validation based on comparison to NMR data. Journal of Computational Chemistry, 34, 2135–2145. doi:10.1002/jcc.23354
  • Humphrey, W., Dalke, A., & Schulten, K. V. M. D. (1996). VMD: Visual molecular dynamics. Journal of Molecular Graphics, 14, 33–38.10.1016/0263-7855(96)00018-5
  • Irwin, J. J., Sterling, T., Mysinger, M. M., Bolstad, E. S., & Coleman, R. G. (2012). ZINC: A free tool to discover chemistry for biology. Journal of Chemical Information and Modeling, 52, 1757–1768. doi:10.1021/ci3001277
  • Javitch, J. A., Fu, D., & Chen, J. (1995). Residues in the fifth membrane–spanning segment of the dopamine D2 receptor exposed in the binding–site crevice. Biochemistry, 34, 16433–16439. doi:10.1021/bi00050a026
  • Javitch, J. A. Ballesteros, J. A., Chen, J., Chiappa, V., & Simpson, M. M. (1999). Electrostatic and aromatic microdomains within the binding-site crevice of the D2 receptor: Contributions of the second membrane-spanning segment. Biochemistry, 38, 7961–7968. doi:10.1021/bi9905314
  • Johnson, D. S., Choi, C., Fay, L. K., Favor, D. A, Repine, J. T., White, A. D., … Serpa, K. A. (2011). Discovery of PF-00217830: Aryl piperazine napthyridinones as D2 partial agonists for schizophrenia and bipolar disorder. Bioorganic & Medicinal Chemistry Letters, 21, 2621–2625.
  • Kalani, M. Y. S., Vaidehi, N., Hall, S. E., Trabanino, R. J., Freddolino, P. L., Kalani, M. A., … Goddard, W. A. (2004). The predicted 3D structure of the human D2 dopamine receptor and the binding site and binding affinities for agonists and antagonists. Proceedings of the National Academy of Sciences, 101, 3815–3820. doi:10.1073/pnas.0400100101
  • Kemsley, E. K., & Tapp, H. S. (2009). OPLS filtered data can be obtained directly from non-orthogonalized PLS1. Journal of Chemometrics, 23(December 2008), 263–264. doi:10.1002/cem.1217
  • Kienast, T., & Heinz, A. (2006). Dopamine and the diseased brain. CNS & Neurological Disorders Drug Targets, 5, 109–131. doi:10.2174/187152706784111560
  • Kling, R. C., Tschammer, N., Lanig, H., Clark, T., & Gmeiner, P. (2014). Active-state model of a dopamine D2 receptor – Gαi complex stabilized by aripiprazole-type partial agonists. PLoS One, 9, e100069. doi:10.1371/journal.pone.0100069
  • Lagerström, M. C., & Schiöth, H. B. (2008). Structural diversity of G protein-coupled receptors and significance for drug discovery. Nature Reviews. Drug Discovery, 7, 339–357. doi:10.1038/nrd2518
  • Larkin, M., Blackshields, G., Brown, N., Chenna, R., McGettigan, P., McWilliam, H., … Higgins, D. (2007). Clustal W and Clustal X version 2.0. Bioinformatics, 23, 2947–2948. doi:10.1093/bioinformatics/btm404
  • Laskowski, R. A, MacArthur, M. W., Moss, D. S., & Thornton, J. M. (1993). PROCHECK: A program to check the stereochemical quality of protein structures. Journal of Applied Crystallography, 26, 283–291. doi:10.1107/S0021889892009944
  • Leonis, G., Avramopoulos, A., Salmas, R. E., Durdagi, S., Yurtsever, M., & Papadopoulos, M. G. (2014). Elucidation of conformational states, dynamics, and mechanism of binding in human κ-opioid receptor complexes. Journal of Chemical Information and Modeling, 54, 2294–2308. doi:10.1021/ci5002873
  • Leopoldo, M., Berardi, F., Colabufo, N. A., De Giorgio, P., Lacivita, E., Perrone, R., & Tortorella, V. (2002). Structure–affinity relationship study on N-[4-(4-arylpiperazin-1-yl)butyl]arylcarboxamides as potent and selective dopamine D3 receptor ligands. Journal of Medicinal Chemistry, 45, 5727–5735.10.1021/jm020952a
  • Lin, C. H., Haadsmasvensson, S. R., Phillips, G., Lahti, R. A., Mccall, R. B., Piercey, M. F., … Chidester, C. G. (1993). Centrally acting serotonergic and dopaminergic agents. 2. Synthesis and structure-activity relationships of 2,3,3a,4,9,9a-hexahydro-1H-benz[f]indole derivatives. Journal of Medicinal Chemistry, 36, 1069–1083.10.1021/jm00060a015
  • Mansour, A., Meng, F., Meador-Woodruff, J. H., Taylor, L. P., Civelli, O., & Akil, H. (1992). Site-directed mutagenesis of the human dopamine D2 receptor. European Journal of Pharmacology: Molecular Pharmacology, 227, 205–214. doi:10.1016/0922-4106(92)90129-j
  • Martyna, G. J., Tobias, D. J., & Klein, M. L. (1994). Constant pressure molecular dynamics algorithms. The Journal of Chemical Physics, 101, 4177–4189. doi:10.1063/1.467468
  • Marvin 14.12.15.0. 2014. ChemAxon. Retrieved from http://www.chemaxon.com
  • McRobb, F. M., Capuano, B., Crosby, I. T., Chalmers, D. K., & Yuriev, E. (2010). Homology modeling and docking evaluation of aminergic G protein-coupled receptors. Journal of Chemical Information and Modeling, 50, 626–637. doi:10.1021/ci900444q
  • Miyamoto, S., & Kollman, P. A. (1992). Settle: An analytical version of the SHAKE and RATTLE algorithm for rigid water models. Journal of Computational Chemistry, 13, 952–962. doi:10.1002/jcc.540130805
  • Overington, J. P., Al-Lazikani, B., & Hopkins, A. L. (2006). How many drug targets are there? Nature Reviews Drug Discovery, 5, 993–996. doi:10.1038/nrd2199
  • Palczewski, K. (2000). Crystal structure of rhodopsin: A G protein-coupled receptor. Science, 289, 739–745. doi:10.1126/science.289.5480.739
  • Paul, M. L., Graybiel, A. M., David, J. C., & Robertson, H. A. (1992). D1-like and D2-like dopamine receptors synergistically activate rotation and c-fos expression in the dopamine-depleted striatum in a rat model of Parkinson’s disease. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 12, 3729–3742.
  • Phillips, J. C., Braun, R., Wang, W., Gumbart, J., Tajkhorshid, E., Villa, E., … Schulten, K. (2005). Scalable molecular dynamics with NAMD. Journal of Computational Chemistry, 26, 1781–1802. doi:10.1002/jcc.20289
  • Pogozheva, I. D., Lomize, M. A., Mosberg, H. I., & Lomize, A. L. (2006). OPM: Orientations of proteins in membranes database. Bioinformatics (Oxford, England), 22, 623–625. doi:10.1093/bioinformatics/btk023
  • Ramachandran, G. N., Ramakrishnan, C., & Sasisekharan, V. (1963). Stereochemistry of polypeptide chain configurations. Journal of Molecular Biology, 7, 95–99. doi:10.1016/S0022-2836(63)80023-6
  • Rasmussen, S. G. F., DeVree, B. T., Zou, Y., Kruse, A. C., Chung, K. Y., Kobilka, T. S., … Kobilka, B. K. (2011). Crystal structure of the β2 adrenergic receptor-Gs protein complex. Nature, 477, 549–555. doi:10.1038/nature10361
  • Rohl, C. A., Strauss, C. E. M., Misura, K. M. S., & Baker, D. (2004). Protein structure prediction using Rosetta. Methods in Enzymology, 383, 66–93. doi:10.1016/S0076-6879(04)83004-0
  • Rosenbaum, D. M., Rasmussen, S. G. F., & Kobilka, B. K. (2009). The structure and function of G-protein-coupled receptors. Nature, 459, 356–363. doi:10.1038/nature08144
  • Rowley, M., Bristow, L. J., & Hutson, P. H. (2001). Current and novel approaches to the drug treatment of schizophrenia. Journal of Medicinal Chemistry, 44, 477–501.10.1021/jm0002432
  • Rubenstein, L. A., & Lanzara, R. G. (1998). Activation of G protein-coupled receptors entails cysteine modulation of agonist binding. Journal of Molecular Structure: THEOCHEM, 430, 57–71. doi:10.1016/S0166-1280(98)90217-2
  • Salmas, R. E., Mestanoglu, M., Yurtsever, M., Noskov, S. Y., & Durdagi, S. (2015). Molecular simulations of solved co-crystallized X-ray structures identify action mechanisms of PDEδ inhibitors. Biophysical Journal, 109, 1163–1168. doi:10.1016/j.bpj.2015.08.001
  • Salmas, R. E., Senturk, M., Yurtsever, M., & Durdagi, S. (2015). Discovering novel carbonic anhydrase type IX (CA IX) inhibitors from seven million compounds using virtual screening and in vitro analysis. Journal of Enzyme Inhibition and Medicinal Chemistry, 6366, 1–9. doi:10.3109/14756366.2015.1036049
  • Salmas, R. E., Unlu, A., Yurtsever, M., Noskov, S. Y., & Durdagi, S. (2015). In silico investigation of PARP-1 catalytic domains in holo and apo states for the design of high-affinity PARP-1 inhibitors. Journal of Enzyme Inhibition and Medicinal Chemistry, 6366, 1–9. doi:10.3109/14756366.2015.1005011
  • Salmas, R. E., Yurtsever, M., & Durdagi, S. (2015). Investigation of inhibition mechanism of chemokine receptor CCR5 by micro-second molecular dynamics simulations. Scientific Reports, 5, 13180, 1–12. doi:10.1038/srep13180
  • Salmas, R. E., Yurtsever, M., Stein, M., Durdagi, S., & . (2015). Modeling and protein engineering studies of active and inactive states of human dopamine D2 receptor (D2R) and investigation of drug/receptor interactions. Molecular Diversity, 19, 321–332. doi:10.1007/s11030-015-9569-3
  • Schrödinger Release 2014-1: LigPrep. 2014. (Version 2.9). New York, NY: Schrödinger, LLC.
  • Schultz, W. (2007). Multiple dopamine functions at different time courses. Annual Review of Neuroscience, 30, 259–288. doi:10.1146/annurev.neuro.28.061604.135722
  • Seeman, P., Chau-Wong, M., Tedesco, J., & Wong, K. (1975). Brain receptors for antipsychotic drugs and dopamine: Direct binding assays. Proceedings of the National Academy of Sciences, 72, 4376–4380. doi:10.1073/pnas.72.11.4376
  • Seeman, P., & Tallerico, T. (1999). Rapid release of antipsychotic drugs from dopamine D2 receptors: An explanation for low receptor occupancy and early clinical relapse upon withdrawal of clozapine or quetiapine. American Journal of Psychiatry, 156, 876–884.10.1176/ajp.156.6.876
  • Siu, S. W. I., Pluhackova, K., & Böckmann, R. A (2012). Optimization of the OPLS-AA force field for long hydrocarbons. Journal of Chemical Theory and Computation, 8, 1459–1470. doi:10.1021/ct200908r
  • Vanommeslaeghe, K., Prabhu Raman, E., & MacKerell, A. D. J. (2012). Automation of the CHARMM general force field (CGenFF) II: Assignment of bonded parameters and partial atomic charges. Journal of Chemical Information and Modeling, 52, 3155–3168. doi:10.1021/ci300363c
  • Venkatakrishnan, A. J., Deupi, X., Lebon, G., Tate, C. G., Schertler, G. F., & Babu, M. M. (2013). Molecular signatures of G-protein-coupled receptors. Nature, 494, 185–194. doi:10.1038/nature11896
  • Wermuth, C. G. (2004). Selective optimization of side activities: Another way for drug discovery. Journal of Medicinal Chemistry, 47, 1303–1314.10.1021/jm030480f
  • Webb, B., & Sali, A. (2014). Comparative protein structure modeling using MODELLER. Current Protocols in Bioinformatics, 2014, 5.6.1–5.6.32. doi:10.1002/0471250953.bi0506s47
  • Wettschureck, N., & Offermanns, S. (2005). Mammalian G proteins and their cell type specific functions. Physiological Reviews, 85, 1159–1204. doi:10.1152/physrev.00003.2005
  • Wiederstein, M., & Sippl, M. J. (2007). ProSA-web: Interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Research, 35 (Web Server issue), W407–W410. doi:10.1093/nar/gkm290
  • Wise, A., Gearing, K., & Rees, S. (2002). Target validation of G-protein coupled receptors. Drug Discovery Today, 7, 235–246. doi:10.1016/S1359-6446(01)02131-6
  • Zeng, F. Y. Soldner, A., Schöneberg, T., & Wess, J. (1999). Conserved extracellular cysteine pair in the M3 muscarinic acetylcholine receptor is essential for proper receptor cell surface localization but not for G protein coupling. Journal of Neurochemistry, 72, 2404–2414. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/10349850
  • Zhang, L., & Skolnick, J. (1998). What should the Z-score of native protein structures be? Protein Science, 7, 1201–1207.10.1002/pro.v7:5
  • Zhang, X., Hodgetts, K., Rachwal, S., Zhao, H., Wasley, J. W. F., Craven, K., … Thurkauf, A. (2000). Trans-1-[(2-phenylcyclopropyl)methyl]-4-arylpiperazines: Mixed dopamine D2/D4 receptor antagonists as potential antipsychotic agents. Journal of Medicinal Chemistry, 43, 3923–3932.10.1021/jm990562x

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.