415
Views
10
CrossRef citations to date
0
Altmetric
Research Articles

Diabetes mellitus caused by mutations in human insulin: analysis of impaired receptor binding of insulins Wakayama, Los Angeles and Chicago using pharmacoinformatics

, , , &
Pages 724-737 | Received 17 Jun 2015, Accepted 26 Feb 2016, Published online: 14 Apr 2016

References

  • Adams, M. J., Blundell, T. L., Dodson, E. J., Dodson, G. G., Vijayan, M., Baker, E. N., … Sheat, S. (1969). Structure of rhombohedral 2 zinc insulin crystals. Nature, 224, 491–495.10.1038/224491a0
  • Ahmad, J. N., Li, J., Biedermannova, L., Kuchar, M., Sipova, H., Semeradtova, A., … Maly, P. (2012). Novel high-affinity binders of human interferon gamma derived from albumin-binding domain of protein G. Proteins: Structure, Function, and Bioinformatics, 80, 774–789. doi:10.1002/prot.23234
  • Baker, D. (2006). Prediction and design of macromolecular structures and interactions. Philosophical Transactions of the Royal Society B: Biological Sciences, 361, 459–463. doi:10.1098/rstb.2005.1803
  • Baker, E. N., Blundell, T. L., Cutfield, J. F., Cutfield, S. M., Dodson, E. J., Dodson, G. G., … Vijayan, N. M. (1988). The structure of 2Zn pig insulin crystals at 1.5 Å resolution. Philosophical Transactions of the Royal Society B: Biological Sciences, 319, 369–456.10.1098/rstb.1988.0058
  • Benedix, A., Becker, C. M., de Groot, B. L., Caflisch, A., & Bockmann, R. A. (2009). Predicting free energy changes using structural ensembles. Nature Methods, 6, 3–4. doi:10.1038/nmeth0109-3
  • Blundell, T. L., Cutfield, J. F., Cutfield, S. M., Dodson, E. J., Dodson, G. G., Hodgkin, D. C., … Vijayan, M. (1971). Atomic positions in rhombohedral 2-zinc insulin crystals. Nature, 231, 506–511.10.1038/231506a0
  • Chen, T. S., & Keating, A. E. (2012). Designing specific protein-protein interactions using computation, experimental library screening, or integrated methods. Protein Science, 21, 949–963. doi:10.1002/pro.2096
  • Chu, E., & Alan, G. (2000). Inside the FFT Black Box: Serial and parallel fast Fourier transform algorithms. New York, NY: CRC Press.
  • Conlon, J. M. (2001). Evolution of the insulin molecule: Insights into structure-activity and phylogenetic relationships. Peptides, 22, 1183–1193.10.1016/S0196-9781(01)00423-5
  • Derewenda, U., Derewenda, Z., Dodson, E. J., Dodson, G. G., Bing, X., & Markussen, J. (1991). X-ray analysis of the single chain B29-A1 peptide-linked insulin molecule. Journal of Molecular Biology, 220, 425–433.10.1016/0022-2836(91)90022-X
  • Feig, M., Onufriev, A., Lee, M. S., Im, W., Case, D. A., & Brooks, C. L., 3rd (2004). Performance comparison of generalized born and Poisson methods in the calculation of electrostatic solvation energies for protein structures. Journal of Computational Chemistry, 25, 265–284. doi:10.1002/jcc.10378
  • Gotz, A. W., Williamson, M. J., Xu, D., Poole, D., Le Grand, S., & Walker, R. C. (2012). Routine microsecond molecular dynamics simulations with AMBER on GPUs. 1. Generalized born. Journal of Chemical Theory and Computation, 8, 1542–1555. doi:10.1021/ct200909j
  • Grant, B. J., Rodrigues, A. P., ElSawy, K. M., McCammon, J. A., & Caves, L. S. (2006). Bio3d: An R package for the comparative analysis of protein structures. Bioinformatics, 22, 2695–2696. doi:10.1093/bioinformatics/btl461
  • Guex, N., & Peitsch, M. C. (1997). SWISS-MODEL and the Swiss-PdbViewer: An environment for comparative protein modeling. Electrophoresis, 18, 2714–2723. doi:10.1002/elps.1150181505
  • Hayashi, T., Nozaki, Y., Nishizuka, M., Ikawa, M., Osada, S., & Imagawa, M. (2011). Factor for adipocyte differentiation 158 gene disruption prevents the body weight gain and insulin resistance induced by a high-fat diet. Biological & Pharmaceutical Bulletin, 34, 1257–1263. doi:JST.JSTAGE/bpb/34.1257[pii]
  • Hua, Q. X., Hu, S. Q., Frank, B. H., Jia, W., Chu, Y. C., Wang, S. H., … Weiss, M. A. (1996). Mapping the functional surface of insulin by design: Structure and function of a novel A-chain analogue. Journal of Molecular Biology, 264, 390–403. doi:10.1006/jmbi.1996.0648
  • Hua, Q. X., Shoelson, S. E., Kochoyan, M., & Weiss, M. A. (1991). Receptor binding redefined by a structural switch in a mutant human insulin. Nature, 354, 238–241. doi:10.1038/354238a0
  • Humphrey, W., Dalke, A., & Schulten, K. (1996). VMD: Visual molecular dynamics. Journal of Molecular Graphics, 14, 33–38.10.1016/0263-7855(96)00018-5
  • Kabsch, W., & Sander, C. (1983). Dictionary of protein secondary structure: Pattern recognition of hydrogen-bonded and geometrical features. Biopolymers, 22, 2577–2637. doi:10.1002/bip.360221211
  • Kamisetty, H., Ramanathan, A., Bailey-Kellogg, C., & Langmead, C. J. (2011). Accounting for conformational entropy in predicting binding free energies of protein-protein interactions. Proteins: Structure, Function, and Bioinformatics, 79, 444–462. doi:10.1002/prot.22894
  • Kortemme, T., & Baker, D. (2004). Computational design of protein-protein interactions. Current Opinion in Chemical Biology, 8, 91–97. doi:10.1016/j.cbpa.2003.12.008
  • Ludvigsen, S., Olsen, H. B., & Kaarsholm, N. C. (1998). A structural switch in a mutant insulin exposes key residues for receptor binding. Journal of Molecular Biology, 279(1), 1–7. doi:10.1006/jmbi.1998.1801
  • Lyu, P. C., Liff, M. I., Marky, L. A., & Kallenbach, N. R. (1990). Side chain contributions to the stability of alpha-helical structure in peptides. Science, 250, 669–673.10.1126/science.2237416
  • Menting, J. G., Whittaker, J., Margetts, M. B., Whittaker, L. J., Kong, G. K., Smith, B. J., … Lawrence, M. C. (2013). How insulin engages its primary binding site on the insulin receptor. Nature, 493, 241–245. doi:10.1038/nature11781
  • Mirmira, R. G., Nakagawa, S. H., & Tager, H. S. (1991). Importance of the character and configuration of residues B24, B25, and B26 in insulin-receptor interactions. Journal of Biological Chemistry, 266, 1428–1436.
  • Mirmira, R. G., & Tager, H. S. (1989). Role of the phenylalanine B24 side chain in directing insulin interaction with its receptor. Importance of main chain conformation. Journal of Biological Chemistry, 264, 6349–6354.
  • Mongan, J., Simmerling, C., McCammon, J. A., Case, D. A., & Onufriev, A. (2007). Generalized born model with a simple, robust molecular volume correction. Journal of Chemical Theory and Computation, 3, 156–169. doi:10.1021/ct600085e
  • Moretti, R., Fleishman, S. J., Agius, R., Torchala, M., Bates, P. A., Kastritis, P. L., … Baker, D. (2013). Community-wide evaluation of methods for predicting the effect of mutations on protein-protein interactions. Proteins: Structure, Function, and Bioinformatics, 81, 1980–1987. doi:10.1002/prot.24356
  • Nakagawa, S. H., & Tager, H. S. (1992). Importance of aliphatic side-chain structure at positions 2 and 3 of the insulin A chain in insulin-receptor interactions. Biochemistry, 31, 3204–3214.10.1021/bi00127a023
  • Nguyen, H., Roe, D. R., & Simmerling, C. (2013). Improved Generalized Born Solvent Model Parameters for Protein Simulations. Journal of Chemical Theory and Computation, 9, 2020–2034. doi:10.1021/ct3010485
  • Nisius, B., Sha, F., & Gohlke, H. (2012). Structure-based computational analysis of protein binding sites for function and druggability prediction. Journal of Biotechnology, 159, 123–134. doi:10.1016/j.jbiotec.2011.12.005
  • O’Neil, K. T., & DeGrado, W. F. (1990). A thermodynamic scale for the helix-forming tendencies of the commonly occurring amino acids. Science, 250, 646–651.10.1126/science.2237415
  • Onufriev, A., Bashford, D., & Case, D. A. (2004). Exploring protein native states and large-scale conformational changes with a modified generalized born model. Proteins: Structure, Function, and Bioinformatics, 55, 383–394. doi:10.1002/prot.20033
  • Padmanabhan, S., Marqusee, S., Ridgeway, T., Laue, T. M., & Baldwin, R. L. (1990). Relative helix-forming tendencies of nonpolar amino acids. Nature, 344, 268–270. doi:10.1038/344268a0
  • Pandyarajan, V., Smith, B. J., Phillips, N. B., Whittaker, L., Cox, G. P., Wickramasinghe, N., … Weiss, M. A. (2014). Aromatic anchor at an invariant hormone-receptor interface. Journal of Biological Chemistry, 289, 34709–34727. doi:10.1074/jbc.M114.608562
  • Parasuraman, S. (2012). Protein data bank. Journal of Pharmacology Pharmacotherapecutics, 3, 351–352. doi:10.4103/0976-500X.103704
  • Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., & Ferrin, T. E. (2004). UCSF Chimera – A visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25, 1605–1612. doi:10.1002/jcc.20084
  • Pierce, B. G., Hourai, Y., & Weng, Z. (2011). Accelerating protein docking in ZDOCK using an advanced 3D convolution library. PLoS One, 6, e24657. doi:10.1371/journal.pone.0024657
  • Pierce, B. G., Wiehe, K., Hwang, H., Kim, B. H., Vreven, T., & Weng, Z. (2014). ZDOCK server: Interactive docking prediction of protein-protein complexes and symmetric multimers. Bioinformatics, 30, 1771–1773. doi:10.1093/bioinformatics/btu097
  • Pullen, R. A., Lindsay, D. G., Wood, S. P., Tickle, I. J., Blundell, T. L., Wollmer, A., … Gammeltoft, S. (1976). Receptor-binding region of insulin. Nature, 259, 369–373.10.1038/259369a0
  • Sobolev, V., Eyal, E., Gerzon, S., Potapov, V., Babor, M., Prilusky, J., & Edelman, M. (2005). SPACE: A suite of tools for protein structure prediction and analysis based on complementarity and environment. Nucleic Acids Research, 33(Web Server issue), W39–W43. doi:10.1093/nar/gki398
  • Wan, Z. L., Huang, K., Xu, B., Hu, S. Q., Wang, S., Chu, Y. C., … Weiss, M. A. (2005). Diabetes-associated mutations in human insulin: Crystal structure and photo-cross-linking studies of a-chain variant insulin Wakayama. Biochemistry, 44, 5000–5016. doi:10.1021/bi047585k
  • Wan, Z. L., Xu, B., Chu, Y. C., Katsoyannis, P. G., & Weiss, M. A. (2003). Crystal structure of allo-Ile(A2)-insulin, an inactive chiral analogue: Implications for the mechanism of receptor binding. Biochemistry, 42, 12770–12783. doi:10.1021/bi034430o
  • Ward, C. W., Menting, J. G., & Lawrence, M. C. (2013). The insulin receptor changes conformation in unforeseen ways on ligand binding: Sharpening the picture of insulin receptor activation. BioEssays, 35, 945–954. doi:10.1002/bies.201300065, doi/910 1002/bies 201370111
  • Weiss, M. A., Hua, Q. X., Jia, W., Chu, Y. C., Wang, R. Y., & Katsoyannis, P. G. (2000). Hierarchical protein “un-design”: Insulin’s intrachain disulfide bridge tethers a recognition alpha-helix. Biochemistry, 39, 15429–15440.10.1021/bi001905s
  • Weitzel, G., Bauer, F. U., & Eisele, K. (1978). Structure and activity of insulin, XVI. Semisyntheses of desheptapeptide-(B24–30)- up to destripeptide-(B28–30)-insulin with lysine or alanine in place of arginine in position B22: Influence on the three-step-increase of activity in positions B24–26 (Phe-Phe-Tyr). Hoppe-Seyler´s Zeitschrift für physiologische Chemie, 359, 945–958.10.1515/bchm2.1978.359.2.945
  • Wollmer, A., Strassburger, W., Glatter, U., Dodson, G. G., McCall, M., Gattner, H. G., … Rittel, W. (1981). Two mutant forms of human insulin. Structural consequences of the substitution of invariant B24- or B25-phenylalanine by leucine. Hoppe-Seyler´s Zeitschrift für physiologische Chemie, 362, 581–592.10.1515/bchm2.1981.362.1.581
  • Xu, B., Hua, Q. X., Nakagawa, S. H., Jia, W., Chu, Y. C., Katsoyannis, P. G., & Weiss, M. A. (2002). Chiral mutagenesis of insulin’s hidden receptor-binding surface: Structure of an allo-isoleucine(A2) analogue. Journal of Molecular Biology, 316, 435–441. doi:10.1006/jmbi.2001.5377
  • Zakova, L., Kletvikova, E., Veverka, V., Lepsik, M., Watson, C. J., Turkenburg, J. P., … Brzozowski, A. M. (2013). Structural integrity of the B24 site in human insulin is important for hormone functionality. Journal of Biological Chemistry, 288, 10230–10240. doi:10.1074/jbc.M112.448050

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.