367
Views
19
CrossRef citations to date
0
Altmetric
Research Articles

Understanding the effects of two bound glucose in Sudlow site I on structure and function of human serum albumin: theoretical studies

, , , &
Pages 781-790 | Received 04 Nov 2015, Accepted 29 Feb 2016, Published online: 29 Jul 2016

References

  • Abou-Zied, O. K., Al-Lawatia, N., Elstner, M., & Steinbrecher, T. B. (2013). Binding of hydroxyquinoline probes to human serum albumin: Combining molecular modeling and Förster’s resonance energy transfer spectroscopy to understand flexible ligand binding. The Journal of Physical Chemistry B, 117, 1062–1074. doi:10.1021/jp311238n
  • Aghaee, E., Ghasemi, J. B., Manouchehri, F., & Balalaie, S. (2014). Combined docking, molecular dynamics simulations and spectroscopic studies for the rational design of a dipeptide ligand for affinity chromatography separation of human serum albumin. Journal of Molecular Modeling, 20, 2446. doi:10.1007/s00894-014-2446-7
  • Anguizola, J., Matsuda, R., Barnaby, O. S., Hoy, K. S., Wa, C., DeBolt, E., … Hage, D. S. (2013). Review: Glycation of human serum albumin. Clinica Chimica Acta, 425, 64–76. doi:10.1016/j.cca.2013.07.013
  • Baraka-Vidot, J., Planesse, C., Meilhac, O., Militello, V., van den Elsen, J., Bourdon, E., & Rondeau, P. (2015). Glycation alters ligand binding, enzymatic, and pharmacological properties of human albumin. Biochemistry, 54, 3051–3062. doi:10.1021/acs.biochem.5b00273
  • Barnaby, O. S., Cerny, R. L., Clarke, W., & Hage, D. S. (2011). Comparison of modification sites formed on human serum albumin at various stages of glycation. Clinica Chimica Acta, 412, 277–285. doi:10.1016/j.cca.2010.10.018
  • Bhattacharya, A. A., Curry, S., & Franks, N. P. (2000). Binding of the general anesthetics propofol and halothane to human serum albumin. High resolution crystal structures. Journal of Biological Chemistry, 275, 38731–38738. doi:10.1074/jbc.M005460200
  • Bhattacharya, A. A., Grüne, T., & Curry, S. (2000). Crystallographic analysis reveals common modes of binding of medium and long-chain fatty acids to human serum albumin. Journal of Molecular Biology, 303, 721–732. doi:10.1006/jmbi.2000.4158
  • Bussi, G., Donadio, D., & Parrinello, M. (2007). Canonical sampling through velocity rescaling. Journal of Chemical Physics, 126, 14101–14107. doi: Artn 014101 10.1063/1.2408420
  • Cao, H., Chen, T., & Shi, Y. (2015). Glycation of human serum albumin in diabetes: Impacts on the structure and function. Current Medicinal Chemistry Journal, 22, 4–13.
  • Castellanos, M. M., & Colina, C. M. (2013). Molecular dynamics simulations of human serum albumin and role of disulfide bonds. The Journal of Physical Chemistry B, 117, 11895–11905. doi:10.1021/jp402994r
  • Darden, T., York, D., & Pedersen, L. (1993). Particle mesh Ewald: An N⋅log(N) method for Ewald sums in large systems. The Journal of Chemical Physics, 98, 10089–10092.10.1063/1.464397
  • Fasano, M., Curry, S., Terreno, E., Galliano, M., Fanali, G., Narciso, P., … Ascenzi, P. (2005). The extraordinary ligand binding properties of human serum albumin. IUBMB Life (International Union of Biochemistry and Molecular Biology: Life), 57, 787–796. doi:10.1080/15216540500404093
  • Frost, L., Chaudhry, M., Bell, T., & Cohenford, M. (2011). In vitro galactation of human serum albumin: Analysis of the protein’s galactation sites by mass spectrometry. Analytical Biochemistry, 410, 248–256. doi:10.1016/j.ab.2010.11.034
  • Gaussian 09, F., M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., … Fox, D. J. 2009. Gaussian, Inc. Wallingford, CT.
  • Helms, M. K., Petersen, C. E., Bhagavan, N. V., & Jameson, D. M. (1997). Time-resolved fluorescence studies on site-directed mutants of human serum albumin. FEBS Letters, 408, 67–70.10.1016/S0014-5793(97)00389-X
  • Hornak, V., Abel, R., Okur, A., Strockbine, B., Roitberg, A., & Simmerling, C. (2006). Comparison of multiple Amber force fields and development of improved protein backbone parameters. Proteins: Structure, Function, and Bioinformatics, 65, 712–725. doi:10.1002/prot.21123
  • Humphrey, W., Dalke, A., & Schulten, K. (1996). VMD: Visual molecular dynamics. Journal of Molecular Graphics, 14, 33–38.10.1016/0263-7855(96)00018-5
  • Kamal, J. K., & Behere, D. V. (2005). Binding of heme to human serum albumin: Steady-state fluorescence, circular dichroism and optical difference spectroscopic studies. Indian Journal of Biochemistry & Biophysics, 42, 7–12.
  • Lapolla, A., Fedele, D., Reitano, R., Aricò, N. C., Seraglia, R., Traldi, P., … Tonani, R. (2004). Enzymatic digestion and mass spectrometry in the study of advanced glycation end products/peptides. Journal of the American Society for Mass Spectrometry, 15, 496–509. doi:10.1016/j.jasms.2003.11.014
  • Li, J., Jiang, L., & Zhu, X. (2015). Computational studies of the binding mechanisms of fullerenes to human serum albumin. Journal of Molecular Modeling, 21, 177. doi:10.1007/s00894-015-2728-8.
  • Lim, P. S., Cheng, Y. M., & Yang, S. M. (2007). Impairments of the biological properties of serum albumin in patients on haemodialysis. Nephrology (Carlton), 12, 18–24. doi:10.1111/j.1440-1797.2006.00745.x
  • Lindahl, E., Hess, B., & van der Spoel, D. (2001). GROMACS 3.0: a package for molecular simulation and trajectory analysis. Journal of Molecular Modeling, 7, 306–317.
  • Matsuda, R., Li, Z., Zheng, X., & Hage, D. S. (2015). Analysis of glipizide binding to normal and glycated human serum albumin by high-performance affinity chromatography. Analytical and Bioanalytical Chemistry, 407, 5309–5321. doi:10.1007/s00216-015-8688-0
  • Meneghini, C., Leboffe, L., Bionducci, M., Fanali, G., Meli, M., Colombo, G., … Mobilio, S. (2014). The five-to-six-coordination transition of ferric human serum heme-albumin is allosterically-modulated by ibuprofen and warfarin: a combined XAS and MD study. PLoS One, 9, e104231. doi:10.1371/journal.pone.0104231
  • Mohamadi-Nejad, A., Moosavi-Movahedi, A. A., Hakimelahi, G. H., & Sheibani, N. (2002). Thermodynamic analysis of human serum albumin interactions with glucose: insights into the diabetic range of glucose concentration. International Journal of Biochemistry & Cell Biology, 34, 1115–1124. doi:10.1016/S1357-2725(02)00031-6
  • Nasiri, R., Bahrami, H., Zahedi, M., Moosavi-Movahedi, A. A., & Sattarahmady, N. (2010). A Theoretical elucidation of glucose interaction with HSA’s domains. Journal of Biomolecular Structure and Dynamics, 28, 211–226. doi:10.1080/07391102.2010.10507354
  • Petersen, C. E., Ha, C. E., Mandel, M., & Bhagavan, N. V. (1995). Expression of a human serum albumin variant with high affinity for thyroxine. Biochemical and Biophysical Research Communications, 214, 1121–1129. doi:10.1006/bbrc.1995.2402
  • Petitpas, I., Bhattacharya, A. A., Twine, S., East, M., & Curry, S. (2001). Crystal structure analysis of warfarin binding to human serum albumin: Anatomy of drug site I. Journal of Biological Chemistry, 276, 22804–22809. doi:10.1074/jbc.M100575200
  • Pongprayoon, P., & Gleeson, M. P. (2014). Probing the binding site characteristics of HSA: A combined molecular dynamics and cheminformatics investigation. Journal of Molecular Graphics and Modelling, 54, 164–173. doi:10.1016/j.jmgm.2014.10.007
  • Raghav, A., & Ahmad, J. (2014). Glycated serum albumin: A potential disease marker and an intermediate index of diabetes control. Diabetes & Metabolic Syndrome: Clinical Research & Reviews, 8, 245–251. doi:10.1016/j.dsx.2014.09.017
  • Rahnama, E., Mahmoodian-Moghaddam, M., Khorsand-Ahmadi, S., Saberi, M. R., & Chamani, J. (2015). Binding site identification of metformin to human serum albumin and glycated human serum albumin by spectroscopic and molecular modeling techniques: A comparison study. Journal of Biomolecular Structure & Dynamics, 33, 513–533. doi:10.1080/07391102.2014.893540
  • Rohovec, J., Maschmeyer, T., Aime, S., & Peters, J. A. (2003). The structure of the sugar residue in glycated human serum albumin and its molecular recognition by phenylboronate. Chemistry, 9, 2193–2199. doi:10.1002/chem.200204632
  • Roohk, H. V., & Zaidi, A. R. (2008). A review of glycated albumin as an intermediate glycation index for controlling diabetes. Journal of Diabetes Science and Technology, 2, 1114–1121.10.1177/193229680800200620
  • Sengupta, B., & Sengupta, P. K. (2002). The interaction of quercetin with human serum albumin: A fluorescence spectroscopic study. Biochemical and Biophysical Research Communications, 299, 400–403.10.1016/S0006-291X(02)02667-0
  • Shaklai, N., Garlick, R. L., & Bunn, H. F. (1984). Nonenzymatic glycosylation of human serum albumin alters its conformation and function. Journal of Biological Chemistry, 259, 3812–3817.
  • Syrový, I. (1994). Glycation of albumin: reaction with glucose, fructose, galactose, ribose or glyceraldehyde measured using four methods. Journal of Biochemical and Biophysical Methods, 28, 115–121.10.1016/0165-022X(94)90025-6
  • Szkudlarek, A., Maciazek-Jurczyk, M., Chudzik, M., Rownicka-Zubik, J., & Sulkowska, A. (2015). Alteration of human serum albumin tertiary structure induced by glycation. Spectroscopic study. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 153, 560–565. doi:10.1016/j.saa.2015.09.018
  • Szkudlarek, A., Maciazek-Jurczyk, M., Chudzik, M., Rownicka-Zubik, J., & Sulkowska, A. (2016). Alteration of human serum albumin tertiary structure induced by glycation. Spectroscopic study. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 153, 560–565. doi:10.1016/j.saa.2015.09.018
  • Szkudlarek, A., Sulkowska, A., Maciazek-Jurczyk, M., Chudzik, M., & Rownicka-Zubik, J. (2015). Effects of non-enzymatic glycation in human serum albumin. Spectroscopic analysis. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. doi:10.1016/j.saa.2015.01.120
  • Thornalley, P. J., Langborg, A., & Minhas, H. S. (1999). Formation of glyoxal, methylglyoxal and 3-deoxyglucosone in the glycation of proteins by glucose. Biochemical Journal, 344, 109–116.10.1042/bj3440109
  • Wa, C., Cerny, R. L., Clarke, W. A., & Hage, D. S. (2007). Characterization of glycation adducts on human serum albumin by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Clinica Chimica Acta, 385, 48–60. doi:10.1016/j.cca.2007.06.011
  • Wang, Y., Yu, H., Shi, X., Luo, Z., Lin, D., & Huang, M. (2013). Structural mechanism of ring-opening reaction of glucose by human serum albumin. Journal of Biological Chemistry, 288, 15980–15987. doi:10.1074/jbc.M113.467027
  • Yu, H. J., Fang, Y., Lu, X., Liu, Y. J., & Zhang, H. B. (2014). Combined 3D-QSAR, Molecular Docking, Molecular Dynamics Simulation, and Binding Free Energy Calculation Studies on the 5-Hydroxy-2H-Pyridazin-3-One Derivatives as HCV NS5B Polymerase Inhibitors. Chemical Biology & Drug Design, 83, 89–105. doi:10.1111/cbdd.12203

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.