367
Views
13
CrossRef citations to date
0
Altmetric
Research Articles

Structural analysis and molecular docking of trypanocidal aryloxy-quinones in trypanothione and glutathione reductases: a comparison with biochemical data

, , , , , , & show all
Pages 1785-1803 | Received 22 Mar 2016, Accepted 25 May 2016, Published online: 15 Jul 2016

References

  • Benites, J., Valderrama, J. A., Bettega, K., Pedrosa, R. C., Calderon, P. B., & Verrax, J. (2010). Biological evaluation of donor-acceptor aminonaphthoquinones as antitumor agents. European Journal of Medicinal Chemistry, 45, 6052–6057. doi:10.1016/j.ejmech.2010.10.006
  • Berkholz, D. S., Faber, H. R., Savvides, S. N., & Karplus, P. A. (2008). Catalytic cycle of human glutathione reductase near 1 Å resolution. Journal of Molecular Biology, 382, 371–384. doi:10.1016/j.jmb.2008.06.083
  • Bern, C. (2011). Antitrypanosomal therapy for chronic Chagas’ disease. New England Journal of Medicine, 364, 2527–2534. doi:10.1056/NEJMct1014204
  • Bern, C., Montgomery, S. P., Herwaldt, B. L., Rassi, A., Jr, Marin-Neto, J. A., Dantas, R. O., … Moore, A. C. (2007). Evaluation and treatment of Chagas disease in the United States. JAMA, 298, 2171–2181. doi:10.1001/jama.298.18.2171
  • Bilzer, M., Krauth-Siegel, R. L., Schirmer, R. H., Akerboom, T. P. M., Sies, H., & Schulz, G. E. (1984). Interaction of a glutathione S-conjugate with glutathione reductase kinetic and X-ray crystallographic studies. European Journal of Biochemistry, 138, 373–378. doi:10.1111/j.1432-1033.1984.tb07925.x
  • Bond, C. S., Zhang, Y., Berriman, M., Cunningham, M. L., Fairlamb, A. H., & Hunter, W. N. (1999). Crystal structure of Trypanosoma cruzi trypanothione reductase in complex with trypanothione, and the structure-based discovery of new natural product inhibitors. Structure, 7, 81–89. http://dx.doi.org/10.1016/S0969-2126(99)80011-210.1016/S0969-2126(99)80011-2
  • Carraro, R., Iribarne, F., & Paulino, M. (2016). Analysis of cyclosporin A and a set of analogs as inhibitors of a T. cruzi cyclophilin by docking and molecular dynamics. Journal of Biomolecular Structure & Dynamics, 34, 399–413.http://doi.org/10.1080/07391102.2015.1038584
  • Comini, M. A., Dirdjaja, N., Kaschel, M., & Krauth-Siegel, R. L. (2009). Preparative enzymatic synthesis of trypanothione and trypanothione analogues. International Journal for Parasitology, 39, 1059–1062. doi:10.1016/j.ijpara.2009.05.002
  • de Molfetta, F. A., de Freitas, R. F., da Silva, A. B., & Montanari, C. A. (2009). Docking and molecular dynamics simulation of quinone compounds with trypanocidal activity. Journal of Molecular Modeling, 15, 1175–1184. doi:10.1007/s00894-009-0468-3
  • de Paula da Silva, C. H. T., Bernardes, L. S. C., da Silva, V. B., Zani, C. L., & Carvalho, I. (2012). Novel aryl β-aminocarbonyl derivatives as inhibitors of Trypanosoma cruzi trypanothione reductase: Binding mode revised by docking and GRIND2-based 3D-QSAR procedures. Journal of Biomolecular Structure & Dynamics, 29, 702–716. http://doi.org/10.1080/07391102.2011.672633
  • el-Waer, A., Douglas, K. T., Smith, K., & Fairlamb, A. H. (1991). Synthesis of N-benzyloxycarbonyl-l-cysteinylglycine 3-dimethylaminopropylamide disulfide: A cheap and convenient new assay for trypanothione reductase. Analytical Biochemistry, 198, 212–216. doi:10.1016/0003-2697(91)90531-W
  • Fairlamb, A. H., Blackburn, P., Ulrich, P., Chait, B. T., & Cerami, A. (1985). Trypanothione: A novel bis(glutathionyl)spermidine cofactor for glutathione reductase in trypanosomatids. Science, 227, 1485–1487. doi:10.1126/science.3883489
  • Fernandez-Blanco, C., Font, G., & Ruiz, M. J. (2016). Interaction effects of enniatin B, deoxinivalenol and alternariol in Caco-2 cells. Toxicology Letters, 241, 38–48. doi:10.1016/j.toxlet.2015.11.005
  • Gonzalez-Chavez, Z., Olin-Sandoval, V., Rodriguez-Zavala, J. S., Moreno-Sanchez, R., & Saavedra, E. (2015). Metabolic control analysis of the Trypanosoma cruzi peroxide detoxification pathway identifies tryparedoxin as a suitable drug target. Biochimica et Biophysica Acta (BBA) – General Subjects, 1850, 263–273. doi:10.1016/j.bbagen.2014.10.029
  • Gutteridge, J. M., & Halliwell, B. (2000). Free radicals and antioxidants in the year 2000. A historical look to the future. Annals of the New York Academy Science, 899, 136–147. doi:10.1111/j.1749-6632.2000.tb06182.x
  • Halgren, T. A. (1996a). Merck molecular force field. I. Basis, form, scope, parameterization, and performance of MMFF94. Journal of Computational Chemistry, 17, 490–519. doi:10.1002/(SICI)1096-987X(199604)17:5/6<490:AID-JCC1>3.0.CO;2-P
  • Halgren, T. A. (1996b). Merck molecular force field. V. Extension of MMFF94 using experimental data, additional computational data, and empirical rules. Journal of Computational Chemistry, 17, 616–641. doi:10.1002/(SICI)1096-987X(199604)17:5/6<616:AID-JCC5>3.0.CO;2-X
  • Henry, T. R., & Wallace, K. B. (1996). Differential mechanisms of cell killing by redox cycling and arylating quinones. Archives of Toxicology, 70, 482–489. doi:10.1007/s002040050302
  • Hikichi, N., Paulino, M., Hansz, M., & Tapia, O. (1995). A molecular dynamics study of glutathione reductase. Journal of Molecular Structure: THEOCHEM, 335, 243–254. doi:10.1016/0166-1280(94)04005-D
  • Hoelz, L. V. B., Leal, V. F., Rodrigues, C. R., Pascutti, P. G., Albuquerque, M. G., Muri, E. M. F., & Dias, L. R. S. (2015). Molecular dynamics simulations of the free and inhibitor-bound cruzain systems in aqueous solvent: Insights on the inhibition mechanism in acidic pH. Journal of Biomolecular Structure & Dynamics, 1–10. http://doi.org/10.1080/07391102.2015.1100139
  • Iribarne, F., Paulino, M., Aguilera, S., & Tapia, O. (2009). Assaying phenothiazine derivatives as trypanothione reductase and glutathione reductase inhibitors by theoretical docking and molecular dynamics studies. Journal of Molecular Graphics and Modelling, 28, 371–381. doi:10.1016/j.jmgm.2009.09.003
  • Iribarne, F., Paulino, M., Aguilera, S., Murphy, M., & Tapia, O. (2002). Docking and molecular dynamics studies at trypanothione reductase and glutathione reductase active sites. Journal of Molecular Modeling, 8, 173–183. doi:10.1007/s00894-002-0082-0
  • Janes, W., & Schulz, G. E. (1990). The binding of the retro-analogue of glutathione disulfide to glutathione reductase. Journal of Biological Chemistry, 265, 10443–10445. doi:10.2210/pdb4gr1/pdb
  • Karplus, P. A., & Schulz, G. E. (1987). Refined structure of glutathione reductase at 1.54 Å resolution. Journal of Molecular Biology, 195, 701–729. doi:10.2210/pdb3grs/pdb
  • Karplus, P. A., & Schulz, G. E. (1989). Substrate binding and catalysis by glutathione reductase as derived from refined enzyme: Substrate crystal structures at 2 Å resolution. Journal of Molecular Biology, 210, 163–180. doi:10.1016/0022-2836(89)90298-2
  • Karplus, P. A., Pai, E. F., & Schulz, G. E. (1989). A crystallographic study of the glutathione binding site of glutathione reductase at 0.3-nm resolution. European Journal of Biochemistry, 178, 693–703. doi:10.1111/j.1432-1033.1989.tb14500.x
  • Kovacic, P. (2007). Unifying mechanism for anticancer agents involving electron transfer and oxidative stress: Clinical implications. Medical Hypotheses, 69, 510–516. doi:10.1016/j.mehy.2006.08.046
  • Labute, P. (2010). LowModeMD—implicit low-mode velocity filtering applied to conformational search of macrocycles and protein loops. Journal of Chemical Information and Modeling, 50, 792–800. doi:10.1021/ci900508k
  • Manoel-Caetano Fda, S., & Silva, A. E. (2007). Implications of genetic variability of Trypanosoma cruzi for the pathogenesis of Chagas disease. Cadernos de Saúde Pública, 23, 2263–2274. doi:10.1590/S0102-311X2007001000002
  • Maran, E., Fernandez, M., Barbieri, P., Font, G., & Ruiz, M. J. (2009). Effects of four carbamate compounds on antioxidant parameters. Ecotoxicology and Environmental Safety, 72, 922–930. doi:10.1016/j.ecoenv.2008.01.018
  • Molina, I., Gomez i Prat, J., Salvador, F., Trevino, B., Sulleiro, E., Serre, N., … Pahissa, A. (2014). Randomized trial of posaconazole and benznidazole for chronic Chagas’ disease. New England Journal of Medicine, 370, 1899–1908. doi:10.1056/NEJMoa1313122
  • Nordhoff, A., Bucheler, U. S., Werner, D., & Schirmer, R. H. (1993). Folding of the four domains and dimerization are impaired by the Gly446–>Glu exchange in human glutathione reductase. Implications for the design of antiparasitic drugs. Biochemistry, 32, 4060–4066. doi:10.1021/bi00066a029
  • O’Brien, P. J. (1991). Molecular mechanisms of quinone cytotoxicity. Chemico-Biological Interactions, 80, 1–41. doi:10.1016/0009-2797(91)90029-7
  • Pai, E. F., & Schulz, G. E. (1983). The catalytic mechanism of glutathione reductase as derived from x-ray diffraction analyses of reaction intermediates. Journal of Biological Chemistry, 258, 1752–1757. Retrieved from http://www.jbc.org/content/258/3/1752.abstract#cited-by
  • Pai, E. F., Karplus, P. A., & Schulz, G. E. (1988). Crystallographic analysis of the binding of NADPH, NADPH fragments, and NADPH analogues to glutathione reductase. Biochemistry, 27, 4465–4474. doi:10.1021/bi00412a038
  • Paulino, M., Iribarne, F., Dubin, M., Aguilera-Morales, S., Tapia, O., & Stoppani, A. O. (2005). The chemotherapy of Chagas disease: An overview. Mini-Reviews in Medicinal Chemistry, 5, 499–519. doi:10.2174/1389557053765565
  • Paulino, M., Alvareda, E. M., Denis, P. A., Barreiro, E. J., Sperandio da Silva, G. M., Dubin, M., … Tapia, O. (2008). Studies of trypanocidal (inhibitory) power of naphthoquinones: Evaluation of quantum chemical molecular descriptors for structure–activity relationships. European Journal of Medicinal Chemistry, 43, 2238–2246. doi:10.1016/j.ejmech.2007.12.023
  • Persch, E., Bryson, S., Todoroff, N. K., Eberle, C., Thelemann, J., Dirdjaja, N., … Diederich, F. (2014). Binding to large enzyme pockets: Small-molecule inhibitors of trypanothione reductase. ChemMedChem, 9, 1880–1891. doi:10.1002/cmdc.201402032
  • Prati, F., Bergamini, C., Molina, M. T., Falchi, F., Cavalli, A., Kaiser, M., … Bolognesi, M. L. (2015). 2-Phenoxy-1,4-naphthoquinones: From a Multitarget Antitrypanosomal to a Potential Antitumor Profile. Journal of Medicinal Chemistry, 58, 6422–6434. doi:10.1021/acs.jmedchem.5b00748
  • Rassi, A., Jr, Rassi, A., & Marin-Neto, J. A. (2010). Chagas disease. The Lancet, 375, 1388–1402. doi:10.1016/S0140-6736(10)60061-X
  • Salas, C. O., Faundez, M., Morello, A., Maya, J. D., & Tapia, R. A. (2011). Natural and synthetic naphthoquinones active against Trypanosoma Cruzi: An initial step towards new drugs for Chagas disease. Current Medicinal Chemistry, 18, 144–161. doi:10.2174/092986711793979779
  • Savvides, S. N., & Karplus, P. A. (1996). Kinetics and crystallographic analysis of human glutathione reductase in complex with a xanthene inhibitor. Journal Biological Chemistry, 271, 8101–8107. doi:10.1074/jbc.271.14.8101
  • Turrens, J. F. (2004). Oxidative stress and antioxidant defenses: A target for the treatment of diseases caused by parasitic protozoa. Molecular Aspects of Medicine, 25, 211–220. doi:10.1016/j.mam.2004.02.021
  • Udatha, D. B., Sugaya, N., Olsson, L., & Panagiotou, G. (2012). How well do the substrates KISS the enzyme? Molecular docking program selection for feruloyl esterases. Scientific Reports, 2, 323. doi:10.1038/srep00323
  • Vazquez, K., Espinosa-Bustos, C., Soto-Delgado, J., Tapia, R. A., Varela, J., Birriel, E., … Salas, C. O. (2015). New aryloxy-quinone derivatives as potential anti-Chagasic agents: Synthesis, trypanosomicidal activity, electrochemical properties, pharmacophore elucidation and 3D-QSAR analysis. RSC Advances, 5, 65153–65166. doi:10.1039/C5RA10122K
  • Viotti, R., Vigliano, C., Lococo, B., Bertocchi, G., Petti, M., Alvarez, M. G., … Armenti, A. (2006). Long-term cardiac outcomes of treating chronic Chagas disease with benznidazole versus no treatment. Annals of Internal Medicine, 144, 724–734. doi:10.7326/0003-4819-144-10-200605160-00006
  • Walsh, C., Bradley, M., & Nadeau, K. (1991). Molecular studies on trypanothione reductase, a target for antiparasitic drugs. Trends in Biochemical Sciences, 16, 305–309. doi:10.1016/0968-0004(91)90124-E
  • WHO (2011). Working to overcome the global impact of neglected tropical diseases – Summary. Releve epidemiologique hebdomadaire/Section d’hygiene du Secretariat de la Societe des Nations = Weekly epidemiological record/Health Section of the Secretariat of the League of Nations, 86, 113–120. doi:10.1016/S0140-6736(09)61877
  • Woodcock, J., & Woosley, R. (2008). The FDA critical path initiative and its influence on new drug development. Annual Review of Medicine, 59, 1–12. doi:10.1146/annurev.med.59.090506.155819
  • Worthington, D. J., & Rosemeyer, M. A. (1974). Human glutathione reductase: Purification of the crystalline enzyme from erythorocytes. European Journal of Biochemistry, 48, 167–177. doi:10.1111/j.1432-1033.1974.tb03754.x
  • Yun, O., Lima, M. A., Ellman, T., Chambi, W., Castillo, S., Flevaud, L., … Palma, P. P. (2009). Feasibility, drug safety, and effectiveness of etiological treatment programs for Chagas disease in Honduras, Guatemala, and Bolivia: 10-year experience of Medicines Sans Frontiers. PLoS Neglected Tropical Diseases, 3, e488. doi:10.1371/journal.pntd.0000488

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.