255
Views
8
CrossRef citations to date
0
Altmetric
Research Articles

Scrutiny of chain-length and N-terminal effects in α-helix folding: a molecular dynamics study on polyalanine peptides

, , &
Pages 1923-1935 | Received 22 Feb 2016, Accepted 07 Jun 2016, Published online: 06 Jul 2016

References

  • Autiero, I., Langella, E., & Saviano, M. (2013). Insights into the mechanism of interaction between trehalose-conjugated beta-sheet breaker peptides and Aβ(1–42) fibrils by molecular dynamics simulations. Molecular BioSystems, 9, 2835–2841.10.1039/c3mb70235a
  • Baker, E. G., Bartlett, G. J., Crump, M. P., Sessions, R. B., Linden, N., Faul, C. F., & Woolfson, D. N. (2015). Local and macroscopic electrostatic interactions in single α-helices. Nature Chemical Biology, 11, 221–228.
  • Baldwin, R. L. (2007). Energetics of protein folding. Journal of Molecular Biology, 371, 283–301.10.1016/j.jmb.2007.05.078
  • Baweja, L., Balamurugan, K., Subramanian, V., & Dhawan, A. (2015). Effect of graphene oxide on the conformational transitions of amyloid beta peptide: A molecular dynamics simulation study. Journal of Molecular Graphics and Modelling, 61, 175–185.10.1016/j.jmgm.2015.07.007
  • Berendsen, H. J. C., Postma, J. P. M., van Gunsteren, W. F., & Hermans, J. (1981) Interaction models for water in relation to protein hydration. Pullman, B. (Ed.), Intermolecular forces (pp. 331–342). Dordrecht: Reidel Publishing Company.10.1007/978-94-015-7658-1
  • Best, R. B., Buchete, N., & Hummer, G. (2008). Are current molecular dynamics force fields too helical? Biophysical Journal, 95, L07–L09.10.1529/biophysj.108.132696
  • Best, R. B., & Hummer, G. (2009). Optimized molecular dynamics force fields applied to the helix−coil transition of polypeptides. The Journal of Physical Chemistry B, 113, 9004–9015.10.1021/jp901540t
  • Bobde, V., Beri, S., Rawale, S., Satyanarayana, C. V. V., & Durani, S. (1995). A single point chiral inversion that selforganizes a randomcoil peptide. Apolar solvent conformation of Boc-(L\D)-Glu-Ala-Leu-LysNHMe. Tetrahedron, 51, 3077–3086.10.1016/0040-4020(95)00047-C
  • Brooks, C. L., III (2002). Protein and peptide folding explored with molecular simulations. Accounts of Chemical Research, 35, 447–454.10.1021/ar0100172
  • Brooks, B. R., Brooks, C. L., III, Mackerell, A. D., Nilsson, L., Petrella, R. J., Roux, B., ... Karplus, M. (2009). CHARMM: The biomolecular simulation program. Journal of Computational Chemistry, 30, 1545–1614.10.1002/jcc.v30:10
  • Bywater, R. P. (2013). Protein folding: A problem with multiple solutions. Journal of Biomolecular Structure and Dynamics, 31, 351–362.10.1080/07391102.2012.703062
  • Chakrabartty, A., & Baldwin, R. L. (1995). Stability of alpha-helices. Advances in Protein Chemistry, 46, 141–176.10.1016/S0065-3233(08)60334-4
  • Chen, Y., & Ding, J. (2014). Construction of an intermediate-resolution lattice model and re-examination of the helix-coil transition: A dynamic Monte Carlo simulation. Journal of Biomolecular Structure and Dynamics, 32, 792–803.10.1080/07391102.2013.791645
  • Chou, P. Y., & Fasman, G. D. (1974). Prediction of protein conformation. Biochemistry, 13, 222–245.10.1021/bi00699a002
  • Cote, Y., Maisuradze, G. G., Delarue, P., Scheraga, H. A., & Senet, P. (2015). New insights into protein (Un)folding dynamics. The Journal of Physical Chemistry Letters, 6, 1082–1086.10.1021/acs.jpclett.5b00055
  • D’Ursi, P., Orro, A., Morra, G., Moscatelli, M., Trombetti, G., Milanesi, L., & Rovida, E. (2015). Molecular dynamics and docking simulation of a natural variant of Activated Protein C with impaired protease activity: Implications for integrin-mediated antiseptic function. Journal of Biomolecular Structure and Dynamics, 33, 85–92.10.1080/07391102.2013.851033
  • Dannenberg, J. J. (2005). The importance of cooperative interactions and a solid-state paradigm to proteins: What Peptide chemists can learn from molecular crystals. Advances in Protein Chemistry, 72, 227–273.10.1016/S0065-3233(05)72009-X
  • Darden, T., York, D., & Pedersen, L. (1993). Particle mesh Ewald: An N⋅log(N) method for Ewald sums in large systems. The Journal of Chemical Physics, 98, 10089–10092.10.1063/1.464397
  • Daura, X., Gademann, K., Jaun, B., Seebach, D., van Gunsteren, W. F., & Mark, A. E. (1999). Peptide folding: When simulation meets experiment. Angewandte Chemie International Edition, 38, 236–240.10.1002/(ISSN)1521-3773
  • Demizu, Y., Misawa, T., Nagakubo, T., Kanda, Y., Okuhira, K., Sekino, Y., … Kurihara, M. (2015). Structural development of stabilized helical peptides as inhibitors of estrogen receptor (ER)-mediated transcription. Bioorganic & Medicinal Chemistry, 23, 4132–4138.
  • Desiraju, G. R., & Steiner, T. (1999). The weak hydrogen bond in structural chemistry and biology. Oxford: Oxford University Press.
  • Dinh, T. T., Kim, D. H., Luong, H. X., Lee, B. J., & Kim, Y. W. (2015). Antimicrobial activity of doubly-stapled alanine/lysine-based peptides. Bioorganic & Medicinal Chemistry Letters, 25, 4016–4019.
  • Duan, Y., Wu, C., Chowdhury, S., Lee, M. C., Xiong, G., Zhang, W., … Kollman, P. (2003). A point-charge force field for molecular mechanics simulations of proteins based on condensed-phase quantum mechanical calculations. Journal of Computational Chemistry, 16, 1999–2012.10.1002/(ISSN)1096-987X
  • Durani, S. (2008). Protein design with l - and d -α-amino acid structures as the alphabet. Accounts of Chemical Research, 41, 1301–1308.10.1021/ar700265t
  • Dwyer, D. S. (2001). Electronic properties of the amino acid side chains contribute to the structural preferences in protein folding. Journal of Biomolecular Structure and Dynamics, 18, 881–892.10.1080/07391102.2001.10506715
  • Elstner, M., Jalkanen, K. J., Knapp-Mohammady, M., Frauenheim, Th, & Suhai, S. (2000). DFT studies on helix formation in N-acetyl-(L-alanyl)n-N’-methylamide for n=1–20. Chemical Physics, 256, 15–27.10.1016/S0301-0104(00)00100-2
  • Englander, S. W., & Mayne, L. (2014). The nature of protein folding pathways. Proceedings of the National Academy of Sciences, 111, 15873–15880.10.1073/pnas.1411798111
  • Essmann, U., Perera, L., Berkowitz, M. L., Darden, T., Lee, H., & Pedersen, L. G. (1995). A smooth particle mesh Ewald method. The Journal of Chemical Physics, 103, 8577–8593.10.1063/1.470117
  • Estieu-Gionnet, K., & Guichard, G. (2011). Stabilized helical peptides: Overview of the technologies and therapeutic promises. Expert Opinion on Drug Discovery, 6, 937–963.10.1517/17460441.2011.603723
  • Fabiola, F., Pattabhi, V., Rawale, S., Raju, E. B., & Durani, S. (1997). Configurationally guided peptide conformational motifs. Crystal structure of a LDLDDL type hexapeptide fold. Chemical Communications, 15, 1379–1380.10.1039/a702562i
  • Flory, P. J. (1969). Statistical mechanics of chain molecules. New York, NY: InterScience.
  • Flory, P. J., & Schimmel, P. R. (1967). Dipole moments in relation to configuration of polypeptide chains. Journal of the American Chemical Society, 89, 6807–6813.10.1021/ja01002a001
  • Fu, C., & Tian, S. X. (2011). A comparative study for molecular dynamics simulations of liquid benzene. Journal of Chemical Theory and Computation, 7, 2240–2252.10.1021/ct2002122
  • Gao, J., Bosco, D. A., Powers, E. T., & Kelly, J. W. (2009). Localized thermodynamic coupling between hydrogen bonding and microenvironment polarity substantially stabilizes proteins. Nature Structural & Molecular Biology, 16, 684–690.
  • Gao, Y., Li, Y., Mou, L., Lin, B., Zhang, J. Z. H., & Mei, Y. (2015). Correct folding of an α-helix and a β-hairpin using a polarized 2D torsional potential. Scientific Reports, 5. Article id: 10359.10.1038/srep10359
  • Graf, J., Nguyen, P. H., Stock, G., & Schwalbe, H. (2007). Structure and dynamics of the homologous series of alanine peptides: A joint molecular dynamics/NMR study. Journal of the American Chemical Society, 129, 1179–1189.10.1021/ja0660406
  • Grigoriev, I. V., Rakhmaninova, A. B., & Mironov, A. A. (1998). Simulated annealing for alpha-helical protein folding: Searches in vicinity of the “molten globule” state. Journal of Biomolecular Structure and Dynamics, 16, 115–122.10.1080/07391102.1998.10508232
  • Gupta, P., Liu, B., Klepacki, D., Gupta, V., Schulten, K., Mankin, A. S., & Vázquez-Laslop, N. (2016). Nascent peptide assists the ribosome in recognizing chemically distinct small molecules. Nature Chemical Biology, 12, 153–158.10.1038/nchembio.1998
  • Guvench, O., & MacKerell, A. D., Jr. (2008). Comparison of protein force fields for molecular dynamics simulations. Methods in Molecular Biology, 443, 63–88.10.1007/978-1-59745-177-2
  • Hornak, V., Abel, R., Okur, A., Strockbine, B., Roitberg, A., & Simmerling, C. (2006). Comparison of multiple Amber force fields and development of improved protein backbone parameters. Proteins: Structure, Function, and Bioinformatics, 65, 712–725.10.1002/prot.v65:3
  • Huang, Y., Feng, Q., Yan, Q., Hao, X., & Chen, Y. (2015). Alpha-helical cationic anticancer peptides: A promising candidate for novel anticancer drugs. Mini Reviews in Medicinal Chemistry, 15, 73–81.10.2174/1389557514666141107120954
  • Huang, J., & MacKerell, A. D., Jr. (2014). Induction of peptide bond dipoles drives cooperative helix formation in the (AAQAA)3 peptide. Biophysical Journal, 107, 991–997.10.1016/j.bpj.2014.06.038
  • Ireta, J., Neugebauer, J., Scheffler, M., Rojo, A., & Galván, M. (2003). Density functional theory study of the cooperativity of hydrogen bonds in finite and infinite α-helices. The Journal of Physical Chemistry B, 107, 1432–1437.10.1021/jp026848m
  • Jani, V., Sonavane, U. B., & Joshi, R. (2011). Microsecond scale replica exchange molecular dynamic simulation of villin headpiece: An insight into the folding landscape. Journal of Biomolecular Structure and Dynamics, 28, 845–860.10.1080/07391102.2011.10508612
  • Jas, G. S., & Kuczera, K. (2012). Computer simulations of helix folding in homo- and heteropeptides. Molecular Simulation, 38, 682–694.10.1080/08927022.2012.671941
  • Jeffrey, G. A., & Saenger, W. (1991). Hydrogen bonding in biological structures. Berlin: Springer-Verlag.10.1007/978-3-642-85135-3
  • Joshi, R. R. (2013). Protein folding: Interplay of hydrophobic–hydrophilic forces? Journal of Biomolecular Structure and Dynamics, 31, 965–966.10.1080/07391102.2012.748530
  • Karle, I. L., Awasthi, S. K., & Balaram, P. (1996). A designed beta-hairpin peptide in crystals. Proceedings of the National Academy of Sciences, 93, 8189–8193.10.1073/pnas.93.16.8189
  • Khara, J. S., Lim, F. K., Wang, Y., Ke, X. Y., Voo, Z. X., Yang, Y. Y., … Ee, P. L. (2015). Designing α-helical peptides with enhanced synergism and selectivity against Mycobacterium smegmatis: Discerning the role of hydrophobicity and helicity. Acta Biomaterialia, 28, 99–108.10.1016/j.actbio.2015.09.015
  • Kobko, N., & Dannenberg, J. J. (2003). Cooperativity in amide hydrogen bonding chains. Relation between energy, position, and H-bond chain length in peptide and protein folding models. The Journal of Physical Chemistry A, 107, 10389–10395.10.1021/jp0365209
  • Kumar, A., Ramakrishnan, V., Ranbhor, R., Patel, K., & Durani, S. (2009). Homochiral stereochemistry: The missing link of structure to energetics in protein folding. The Journal of Physical Chemistry B, 113, 16435–16442.10.1021/jp906811k
  • Kumar, A., Srivastava, S., Tripathi, S., Singh, S. K., Srikrishna, S., & Sharma, A. (2016). Molecular insight into amyloid oligomer destabilizing mechanism of flavonoid derivative 2-(4′ benzyloxyphenyl)-3-hydroxy-chromen-4-one through docking and molecular dynamics simulations. Journal of Biomolecular Structure and Dynamics, 34, 1252–1263.10.1080/07391102.2015.1074943
  • Lee, J., Kwon, I., Jang, S. S., & Cho, A. E. (2016). Investigation of the effect of erythrosine B on amyloid beta peptide using molecular modeling. Journal of Molecular Modeling, 22, 92.10.1007/s00894-016-2960-x
  • Lifson, S., & Roig, A. (1961). On the theory of helix-coil transition in polypeptides. The Journal of Chemical Physics, 34, 1963–1974.10.1063/1.1731802
  • Lindahl, E., Hess, B., & van der Spoel, D. (2001). GROMACS 3.0: A package for molecular simulation and trajectory analysis. Journal of Molecular Modeling, 7, 306–317.
  • Liu, C., Ponder, J. W., & Marshall, G. R. (2014). Helix stability of oligoglycine, oligoalanine, and oligo-β-alanine dodecamers reflected by hydrogen-bond persistence. Proteins: Structure, Function, and Bioinformatics, 82, 3043–3061.10.1002/prot.v82.11
  • Makowska, J., Liwo, A., Zmudzinska, W., Lewandowska, A., Chmurzynski, L., & Scheraga, H. A. (2011). Like-charged residues at the ends of oligoalanine sequences might induce a chain reversal. Biopolymers, 97, 240–249.
  • Makowska, J., Rodziewicz-Motowidlo, S., Baginska, K., Vila, J. A., Liwo, A., Chmurzynski, L., & Scheraga, H. A. (2006). Polyproline II conformation is one of many local conformational states and is not an overall conformation of unfolded peptides and proteins. Proceedings of the National Academy of Sciences, 103, 1744–1749.10.1073/pnas.0510549103
  • Marqusee, S., Robbins, V. H., & Baldwin, R. L. (1989). Unusually stable helix formation in short alanine-based peptides. Proceedings of the National Academy of Sciences, 86, 5286–5290.10.1073/pnas.86.14.5286
  • Marzinek, J. K., Lakshminarayanan, R., Goh, E., Huber, R. G., Panzade, S., Verma, C., & Bond, P. J. (2016). Characterizing the conformational landscape of flavivirus fusion peptides via simulation and experiment. Scientific Reports, 6. Article id: 19160.10.1038/srep19160
  • Mehrban, N., Zhu, B., Tamagnini, F., Young, F. I., Wasmuth, A., Hudson, K. L., … Woolfson, D. N. (2015). Functionalized α-helical peptide hydrogels for neural tissue engineering. ACS Biomaterials Science & Engineering, 1, 431–439.
  • Miller, S. E., Thomson, P. F., & Arora, P. S. (2014). Synthesis of hydrogen-bond surrogate α-helices as inhibitors of protein–protein interactions. Current Protocols in Chemical Biololgy, 6, 101–116.10.1002/9780470559277.ch130202
  • Minicozzi, V., Chiaraluce, R., Consalvi, V., Giordano, C., Narcisi, C., Punzi, P., … Morante, S. (2014). Computational and experimental studies on β-sheet breakers targeting Aβ1-40 fibrils. Journal of Biological Chemistry, 289, 11242–11252.10.1074/jbc.M113.537472
  • Pace, C. N. (2009). Energetics of protein hydrogen bonds. Nature Structural & Molecular Biology, 16, 681–682.
  • Pappu, R. V., Srinivasan, R., & Rose, G. D. (2000). The Flory isolated-pair hypothesis is not valid for polypeptide chains: Implications for protein folding. Proceedings of the National Academy of Sciences, 97, 12565–12570.10.1073/pnas.97.23.12565
  • Pauling, L., & Corey, R. B. (1951). The pleated sheet, a new layer configuration of polypeptide chains. Proceedings of the National Academy of Sciences, 37, 251–256.10.1073/pnas.37.5.251
  • Pelay-Gimeno, M., Glas, A., Koch, O., & Grossmann, T. N. (2015). Structure-based design of inhibitors of protein–protein interactions: Mimicking peptide binding epitopes. Angewandte Chemie International Edition, 54, 8896–8927.10.1002/anie.201412070
  • Raghavender, U. S. (2013). Ultrafast folding and molecular dynamics of a linear hydrophobic β-hairpin. Journal of Biomolecular Structure and Dynamics, 31, 1404–1410.10.1080/07391102.2012.738612
  • Ramachandran, G. N., & Sasisekharan, V. (1968). Conformation of polypeptides and proteins. Advances in Protein Chemistry, 23, 283–437.10.1016/S0065-3233(08)60402-7
  • Ramadan, D., Cline, D. J., Bai, S., Thorpe, C., & Schneider, J. P. (2007). Effects of As(III) binding on β-hairpin structure. Journal of the American Chemical Society, 129, 2981–2988.10.1021/ja067068k
  • Ramakrishnan, V., Ranbhor, R., & Durani, S. (2004). Existence of specific “folds” in polyproline II ensembles of an “unfolded” alanine peptide detected by molecular dynamics. Journal of the American Chemical Society, 126, 16332–16333.10.1021/ja045787y
  • Ramakrishnan, V., Ranbhor, R., Kumar, A., & Durani, S. (2006). The link between sequence and conformation in protein structures appears to be stereochemically established. The Journal of Physical Chemistry B, 110, 9314–9323.10.1021/jp056417e
  • Ranbhor, R., Ramakrishnan, V., Kumar, A., & Durani, S. (2006). The interplay of sequence and stereochemistry in defining conformation in proteins and polypeptides. Biopolymers, 83, 537–545.10.1002/(ISSN)1097-0282
  • Raucci, R., Colonna, G., Castello, G., & Costantini, S. (2013). Peptide folding problem: A molecular dynamics study on polyalanines using different force fields. International Journal of Peptide Research and Therapeutics, 19, 117–123.10.1007/s10989-012-9322-z
  • Rose, G. D., Gierasch, L. M., & Smith, J. A. (1985). Turns in peptides and proteins. Advances in Protein Chemistry, 37, 1–109.10.1016/S0065-3233(08)60063-7
  • Rossetti, G., Musiani, F., Abad, E., Dibenedetto, D., Mouhib, H., Fernandez, C. O., & Carloni, P. (2016). Conformational ensemble of human α-synuclein physiological form predicted by molecular simulations. Physical Chemistry Chemical Physics, 18, 5702–5706.10.1039/C5CP04549E
  • Rossi, M., Blum, V., Kupser, P., von Helden, G., Bierau, F., Pagel, K., … Scheffler, M. (2010). Secondary structure of Ac-Alan-LysH+ polyalanine peptides (n = 5, 10, 15) in vacuo: Helical or not? The Journal of Physical Chemistry Letters, 1, 3465–3470.10.1021/jz101394u
  • Ryckaert, J. P., Ciccotti, G., & Berendsen, H. J. C. (1977). Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. Journal of Computational Physics, 23, 327–341.10.1016/0021-9991(77)90098-5
  • Schulz, J. C., Miettinen, M. S., & Netz, R. R. (2015). Unfolding and folding internal friction of β-hairpins is smaller than that of α-helices. The Journal of Physical Chemistry B, 119, 4565–4574.10.1021/jp512056k
  • Shea, J. E., & Brooks, C. L., III. (2001). From folding theories to folding proteins: A review and assessment of simulation studies of protein folding and unfolding. Annual Review of Physical Chemistry, 52, 499–535.10.1146/annurev.physchem.52.1.499
  • Shi, Z., Olson, C. A., Rose, G. D., Baldwin, R. L., & Kallenbach, N. R. (2002). Polyproline II structure in a sequence of seven alanine residues. Proceedings of the National Academy of Sciences, 99, 9190–9195.10.1073/pnas.112193999
  • Silva, C. H., & Taft, C. A. (2011). Stoichiometry of amino acids drives protein folding? Journal of Biomolecular Structure and Dynamics, 28, 635–636.10.1080/073911011010524970
  • Singhal, N., Snow, C., & Pande, V. S. (2004). Using path sampling to build better Markovian state models: Predicting the folding rate and mechanism of a tryptophan zipper beta hairpin. The Journal of Chemical Physics, 121, 415–425.10.1063/1.1738647
  • Sonavane, U. B., Ramadugu, S. K., & Joshi, R. R. (2008). Study of early events in the protein folding of villin headpiece using molecular dynamics simulation. Journal of Biomolecular Structure and Dynamics, 26, 203–214.10.1080/07391102.2008.10507236
  • Srivastava, K. R., Kumar, A., Goyal, B., & Durani, S. (2011). Stereochemistry and solvent role in protein folding: Nuclear magnetic resonance and molecular dynamics studies of Poly-L and alternating-L, D homopolypeptides in dimethyl sulfoxide. The Journal of Physical Chemistry B, 115, 6700–6708.10.1021/jp200743w
  • Stanger, H. E., & Gellman, S. H. (1998). Rules for antiparallel β-sheet design: D-Pro-Gly is superior to L-Asn-Gly for β-hairpin nucleation. Journal of the American Chemical Society, 120, 4236–4237.10.1021/ja973704q
  • Tanford, C. (1968). Protein denaturation. Advances in Protein Chemistry, 23, 121–282.10.1016/S0065-3233(08)60401-5
  • Topol, I. A., Burt, S. K., Deretey, E., Tang, T. H., Perczel, A., Rashin, A., & Csizmadia, I. G. (2001). Alpha- and 3(10)-helix interconversion: A quantum-chemical study on polyalanine systems in the gas phase and in aqueous solvent. Journal of the American Chemical Society, 123, 6054–6060.10.1021/ja0038934
  • Tsemekhman, K., Goldschmidt, L., Eisenberg, D., & Baker, D. (2007). Cooperative hydrogen bonding in amyloid formation. Protein Science, 16, 761–764.10.1110/ps.062609607
  • van Gunsteren, W. F., Billeter, S. R., Eising, A. A., Hünenberger, P. H., Krüger, P., Mark, A. E., … Tironi, I. G. (1996). Biomolecular Simulation: The GROMOS96 Manual and User Guide. Zürich: Vdf Hochschulverlag AG an der ETH Zürich, 1–1042.
  • van Gunsteren, W. F., Dolenc, J., & Mark, A. E. (2008). Molecular simulation as an aid to experimentalists. Current Opinion in Structural Biology, 18, 149–153.10.1016/j.sbi.2007.12.007
  • Voelz, V. A., Luttmann, E., Bowman, G. R., & Pande, V. S. (2009). Probing the nanosecond dynamics of a designed three-stranded beta-sheet with a massively parallel molecular dynamics simulation. International Journal of Molecular Sciences, 10, 1013–1030.10.3390/ijms10031013
  • Wallace, B. A., & Ravikumar, K. (1988). The gramicidin pore: Crystal structure of a cesium complex. Science, 241, 182–187.10.1126/science.2455344
  • Wang, D., Jaun, B., & van Gunsteren, W. F. (2009). Folding and unfolding of two mixed alpha/beta peptides. ChemBioChem, 10, 2032–2041.10.1002/cbic.v10:12
  • Wolynes, P. G. (2015). Evolution, energy landscapes and the paradoxes of protein folding. Biochimie, 119, 218–230.10.1016/j.biochi.2014.12.007
  • Xu, J., Ren, Y., & Li, J. (2013). Multiscale simulations of protein folding: Application to formation of secondary structures. Journal of Biomolecular Structure and Dynamics, 31, 779–787.10.1080/07391102.2012.709461
  • Yu, H., Ramseier, M., Bürgi, R., & van Gunsteren, W. F. (2004). Comparison of properties of Aib-rich peptides in crystal and solution: A molecular dynamics study. ChemPhysChem, 5, 633–641.10.1002/(ISSN)1439-7641
  • Zagrovic, B., Lipfert, J., Sorin, E. J., Millett, I. S., van Gunsteren, W. F., Doniach, S., & Pande, V. S. (2005). Unusual compactness of a polyproline type II structure. Proceedings of the National Academy of Sciences, 102, 11698–11703.10.1073/pnas.0409693102
  • Zhang, M., Wei, D., Tang, M., Shi, C., Cui, H., & Du, C. (2016). Molecular dynamics simulations of conformation and chain length dependent terahertz spectra of alanine polypeptides. Molecular Simulation, 42, 398–404.10.1080/08927022.2015.1059429
  • Zimm, B. H., & Bragg, J. K. (1959). Theory of the phase transition between helix and random coil in polypeptide chains. The Journal of Chemical Physics, 31, 526–535.10.1063/1.1730390

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.