385
Views
55
CrossRef citations to date
0
Altmetric
Research Articles

Effect of 1-methyl-3-octyleimmidazolium chloride on the stability and activity of lysozyme: a spectroscopic and molecular dynamics studies

, , , &
Pages 2016-2030 | Received 20 Apr 2016, Accepted 16 Jun 2016, Published online: 05 Aug 2016

References

  • Ajloo, D., Sangian, M., Ghadamgahi, M., Evini, M., & Saboury, A. A. (2013). Effect of two imidazolium derivatives of ionic liquids on the structure and activity of adenosine deaminase. International journal of biological macromolecules, 55, 47–61.
  • Amisha Kamal, J. K., & Behere, D. V. (2001). Steady-state and picosecond time-resolved fluorescence studies on native and apo seed coat soybean peroxidase. Biochemical and Biophysical Research Communications, 289, 427–433. doi:10.1006/bbrc.2001.6018
  • Attri, P., & Venkatesu, P. (2012). Influence of protic ionic liquids on the structure and stability of succinylated Con A. International Journal of Biological Macromolecules, 51, 119–128. doi:10.1016/j.ijbiomac.2012.04.017.
  • Baker, G. A., & Heller, W. T. (2009). Small-angle neutron scattering studies of model protein denaturation in aqueous solutions of the ionic liquid 1-butyl-3-methylimidazolium chloride. Chemical Engineering Journal, 147, 6–12. doi:10.1016/j.cej.2008.11.033
  • Berendsen, H. J., Postma, J. P., van Gunsteren, W. F., & Hermans, J. (1981). Interaction models for water in relation to protein hydration. In B. Pullman (Ed.), Intermolecular forces (pp. 331–342). Dordrecht: Springer.
  • Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., & Weissig, H. (2000). The protein data bank. Nucleic Acids Research, 28, 235–242. doi:10.1093/nar/28.1.235
  • Bihari, M., Russell, T. P., & Hoagland, D. A. (2010). Dissolution and dissolved state of cytochrome c in a neat. Hydrophilic Ionic Liquid. Biomacromolecules, 11, 2944–2948. doi:10.1021/bm100735z
  • Bozorgmehr, M. R., Chamani, J., & Moslehi, G. (2015). Spectroscopic and DFT investigation of interactions between cyclophosphamide and aspirin with lysozyme as binary and ternary systems. Journal of Biomolecular Structure and Dynamics, 33, 1669–1681. doi:10.1080/07391102.2014.967299
  • Byrne, N., & Angell, C. A. (2008). Protein unfolding, and the “tuning in” of reversible intermediate states, in protic ionic liquid media. Journal of Molecular Biology, 378, 707–714. doi:10.1016/j.jmb.2008.02.050
  • Byrne, N., Wang, L.-M., Belieres, J.-P., & Angell, C. A. (2007). Reversible folding-unfolding, aggregation protection, and multi-year stabilization, in high concentration protein solutions, using ionic liquids. Chemical Communications, 26, 2714–2716. doi:10.1039/b618943a
  • Cegielska-Radziejewska, R., Leśnierowski, G., & Kijowski, J. (2003). Antibacterial activity of lysozyme modified by the membrane technique. Electronic Journal of Polish Agricultural Universities, 6.
  • Chacon, P., Moran, F., Diaz, J., Pantos, E., & Andreu, J. (1998). Low-resolution structures of proteins in solution retrieved from X-ray scattering with a genetic algorithm. Biophysical Journal, 74, 2760–2775.
  • Chen, G. C., & Yang, J. T. (1977). Two-point calibration of circular dichrometer with d-10-camphorsulfonic acid. Analytical Letters, 10, 1195–1207. doi:10.1080/00032717708067855
  • Chi, Z., & Liu, R. (2010). Phenotypic characterization of the binding of tetracycline to human serum albumin. Biomacromolecules, 12, 203–209.
  • Constatinescu, D., Herrmann, C., & Weingartner, H. (2010). Patterns of protein unfolding and protein aggregation in ionic liquids. Physical Chemistry Chemical Physics, 12, 1756–1763.
  • Cowgill, R. W. (1967). Fluorescence and protein structure: XI. Fluorescence quenching by disulfide and sulfhydryl groups. Biochimica et Biophysica Acta, 140, 37–44.
  • Dang, L.-P., Fang, W.-Z., Li, Y., Wang, Q., Xiao, H.-Z., & Wang, Z.-Z. (2013). Ionic liquid-induced structural and activity changes in hen egg white lysozyme. Applied biochemistry and biotechnology, 169, 290–300.
  • De Diego, T., Lozano, P., Gmouh, S., Vaultier, M., & Iborra, J. L. (2005). Understanding structure−stability relationships of candida antartica lipase B in ionic liquids. Biomacromolecules, 6, 1457–1464. doi:10.1021/bm049259q
  • Ding, F., Zhao, G., Huang, J., Sun, Y., & Zhang, L. (2009). Fluorescence spectroscopic investigation of the interaction between chloramphenicol and lysozyme. European Journal of Medical Chemistry, 44, 4083–4089. doi:10.1016/j.ejmech.2009.04.047
  • Du, K., Sun, J., Song, X., Chen, H., Feng, W., & Ji, P. (2014). Interaction of ionic liquid [bmin][CF3SO3] with lysozyme investigated by two-dimensional fourier transform infrared spectroscopy. ACS Sustainable Chemistry & Engineering, 2, 1420–1428.
  • Fazili, N. A., Bhat, I. A., Bhat, W. F., & Naeem, A. (2015). Anti-fibrillation propensity of a flavonoid baicalein against the fibrils of hen egg white lysozyme: Potential therapeutics for lysozyme amyloidosis. Journal of Biomolecular Structure and Dynamics, 1–13. doi:10.1080/07391102.2015.1108232
  • Fujiwara, S. I., & Amisaki, T. (2006). Molecular dynamics study of conformational changes in human serum albumin by binding of fatty acids. Proteins: Structure, Function and Bioinformatics, 64, 730–739.
  • Ghosh, S., Pandey, N. K., Banerjee, P., Chaudhury, K., Nagy, N. V., & Dasgupta, S. (2015). Copper(II) directs formation of toxic amorphous aggregates resulting in inhibition of hen egg white lysozyme fibrillation under alkaline salt-mediated conditions. Journal of Biomolecular Structure and Dynamics, 33, 991–1007. doi:10.1080/07391102.2014.921864
  • Greenfield, N. J., & Fasman, G. D. (1969). Computed circular dichroism spectra for the evaluation of protein conformation. Biochemistry, 8, 4108–4116.
  • He, Y., Wang, Y., Tang, L., Liu, H., Chen, W., & Zheng, Z. (2008). Binding of puerarin to human serum albumin: A spectroscopic analysis and molecular docking. Journal of Fluorescence, 18, 433–442.
  • Hedoux, A., Krenzlin, S., Paccou, L., Guinet, Y., Flament, M.-P., & Siepmann, J. (2010). Influence of urea and guanidine hydrochloride on lysozyme stability and thermal denaturation; a correlation between activity, protein dynamics and conformational changes. Physical Chemistry Chemical Physics, 12, 13189–13196. doi:10.1039/c0cp00602e
  • Hess, B., Bekker, H., Berendsen, H. J., & Fraaije, J. G. (1997). LINCS: A linear constraint solver for molecular simulations. Journal of Computational Chemistry, 18, 1463–1472.
  • Ibrahim, H. R., Matsuzaki, T., & Aoki, T. (2001). Genetic evidence that antibacterial activity of lysozyme is independent of its catalytic function. FEBS Letters, 506, 27–32.
  • Imoto, T., Forster, L. S., Rupley, J., & Tanaka, F. (1972). Fluorescence of lysozyme: Emissions from tryptophan residues 62 and 108 and energy migration. Proceedings of the National Academy of Sciences USA, 69, 1151–1155.
  • Jana, S., Dalapati, S., Ghosh, S., & Guchhait, N. (2012). Study of microheterogeneous environment of protein human serum albumin by an extrinsic fluorescent reporter: A spectroscopic study in combination with molecular docking and molecular dynamics simulation. Journal of Photochemistry and Photobiology B, 112, 48–58.
  • Kirby, A. J. (2001). The lysozyme mechanism sorted-after 50 years. Nature Structural Biology, 8, 737–738.
  • Knubovets, T., Osterhout, J. J., Connolly, P. J., & Klibanov, A. M. (1999). Structure, thermostability, and conformational flexibility of hen egg-white lysozyme dissolved in glycerol. Proceedings of the National Academy of Sciences, 96, 1262–1267.
  • Kopeć, W., Skiba, T., Korzeniowska, M., Bobak, Ł., & Trziszka, T. (2005). Activity of protease inhibitors and lysozyme of hen’s egg white depending on feed modification and egg storage. Polish Journal Of Food And Nutrition Sciences, 14/55, SI 1, 79–83.
  • Kumar, A., Rani, A., Venkatesu, P., & Kumar, A. (2014). Quantitative evaluation of the ability of ionic liquids to offset the cold-induced unfolding of proteins. Physical Chemistry Chemical Physics, 16, 15806–15810.
  • Kumari, M., Maurya, J. K., Singh, U. K., Khan, A. B., Ali, M., Singh, P., & Patel, R. (2014). Spectroscopic and docking studies on the interaction between pyrrolidinium based ionic liquid and bovine serum albumin. Spectrochimica Acta Part A, 124, 349–356.
  • Lakowicz, J. R. (2007). Principles of fluorescence spectroscopy. London: Springer.
  • Lange, C., Patil, G., & Rudolph, R. (2005). Ionic liquids as refolding additives: N′-alkyl and N′-(ω-hydroxyalkyl) N-methylimidazolium chlorides. Protein Science, 14, 2693–2701. doi:10.1110/ps.051596605
  • Lehrer, S. (1971). Solute perturbation of protein fluorescence. Quenching of the tryptophyl fluorescence of model compounds and of lysozyme by iodide ion. Biochemistry, 10, 3254–3263.
  • Li, Q., Zhai, T., Du, K., Li, Y., & Feng, W. (2013). Enzymatic activity regulated by a surfactant and hydroxypropyl β-cyclodextrin. Colloids and Surfaces B: Biointerfaces, 112, 315–321. doi:10.1016/j.colsurfb.2013.08.014
  • Lindahl, E., Hess, B., & Van Der Spoel, D. (2001). GROMACS 3.0: A package for molecular simulation and trajectory analysis. Journal of Molecular Modeling, 7, 306–317.
  • Maurya, J. K., Mir, M. U., Maurya, N., Dohare, N., Ali, A., & Patel, R. (2016). A spectroscopic and molecular dynamic approach on the interaction between ionic liquid type gemini surfactant and human serum albumin. Journal of Biomolecular Structure and Dynamics, 1–16. doi:10.1080/07391102.2015.1109552
  • Maurya, N., Maurya, J. K., Kumari, M., Khan, A. B., Dohare, R., & Patel, R. (2016). Hydrogen bonding assisted interaction between amitriptyline hydrochloride and hemoglobin: Spectroscopic and molecular dynamics studies. Journal of Biomolecular Structure and Dynamics( just-accepted), 1–45.
  • Mote, U., Bhattar, S., Patil, S., & Kolekar, G. (2010). Interaction between felodipine and bovine serum albumin: Fluorescence quenching study. Luminescence, 25(1), 1–8.
  • Nishimoto, E., Yamashita, S., Yamasaki, N., & Imoto, T. (1999). Resolution and characterization of tryptophyl fluorescence of hen egg-white lysozyme by quenching-and time-resolved spectroscopy. Bioscience, biotechnology, and biochemistry, 63, 329–336.
  • Page, T. A., Kraut, N. D., Page, P. M., Baker, G. A., & Bright, F. V. (2009). Dynamics of loop 1 of domain i in human serum Albumin when dissolved in ionic liquids. Journal of Physical Chemistry B, 113, 12825–12830. doi:10.1021/jp904475v
  • Pan, X., Liu, R., Qin, P., Wang, L., & Zhao, X. (2010). Spectroscopic studies on the interaction of acid yellow with bovine serum albumin. Journal of Luminescence, 130, 611–617. doi:10.1016/j.jlumin.2009.11.004
  • Pan, X., Qin, P., Liu, R., & Wang, J. (2011). Characterizing the interaction between tartrazine and two serum albumins by a hybrid spectroscopic approach. Journal of Agricultural and Food Chemistry, 59, 6650–6656.
  • Paramaguru, G., Kathiravan, A., Selvaraj, S., Venuvanalingam, P., & Renganathan, R. (2010). Interaction of anthraquinone dyes with lysozyme: Evidences from spectroscopic and docking studies. Journal of Hazardous Materials, 175, 985–991. doi:10.1016/j.jhazmat.2009.10.107
  • Pasban Ziyarat, F., Asoodeh, A., Sharif Barfeh, Z., Pirouzi, M., & Chamani, J. (2014). Probing the interaction of lysozyme with ciprofloxacin in the presence of different-sized Ag nano-particles by multispectroscopic techniques and isothermal titration calorimetry. Journal of Biomolecular Structure and Dynamics, 32, 613–629.
  • Patel, R., Kumari, M., & Khan, A. B. (2014). Recent advances in the applications of ionic liquids in protein stability and activity: A review. Applied biochemistry and biotechnology, 172, 3701–3720.
  • Patel, R., Maurya, J. K., Mir, M. U. H., Kumari, M., & Maurya, N. (2014). An insight into the binding between ester-functionalized cationic Gemini surfactant and lysozyme. Journal of Luminescence, 154, 298–304.
  • Patel, S., & Datta, A. (2007). Steady state and time-resolved fluorescence investigation of the specific binding of two chlorin derivatives with human serum albumin. Journal of Physical Chemistry B, 111, 10557–10562.
  • Plechkova, N. V., & Seddon, K. R. (2008). Applications of ionic liquids in the chemical industry. Chemical Society Reviews, 37, 123–150. doi:10.1039/b006677j
  • Qin, P., Su, B., & Liu, R. (2012). Probing the binding of two fluoroquinolones to lysozyme: A combined spectroscopic and docking study. Molecular BioSystems, 8, 1222–1229.
  • Ratnaparkhi, A., Muthu, S. A., Shiriskar, S. M., Pissurlenkar, R. R. S., Choudhary, S., & Ahmad, B. (2015). Effects of hesperidin, a flavanone glycoside interaction on the conformation, stability, and aggregation of lysozyme: Multispectroscopic and molecular dynamic simulation studies? Journal of Biomolecular Structure and Dynamics, 33, 1866–1879. doi:10.1080/07391102.2014.975746
  • Satish, L., Rana, S., Arakha, M., Rout, L., Ekka, B., & Jha, S. (2016). Impact of imidazolium based ionic liquids on the structure and stability of lysozyme. Spectroscopy Letters,49, 383–390. doi:10.1080/00387010.2016.1167089
  • SchuÈttelkopf, A. W., & Van Aalten, D. M. (2004). PRODRG: A tool for high-throughput crystallography of protein – ligand complexes. Acta Crystallographica Section D: Biological Crystallography, 60, 1355–1363.
  • Schuler, L. D., Daura, X., & Van Gunsteren, W. F. (2001). An improved GROMOS96 force field for aliphatic hydrocarbons in the condensed phase. Journal of Computational Chemistry, 22, 1205–1218.
  • Scott, W. R., Hünenberger, P. H., Tironi, I. G., Mark, A. E., Billeter, S. R., & Fennen, J. (1999). The GROMOS biomolecular simulation program package. Journal of Physical Chemistry A, 103, 3596–3607.
  • Shah, D., & Shaikh, A. R. (2016). Interaction of arginine, lysine, and guanidine with surface residues of lysozyme: Implication to protein stability. Journal of Biomolecular Structure and Dynamics, 34, 104–114. doi:10.1080/07391102.2015.1013158
  • Sheng, C., & Dian, H. (1982). Lysozyme. Shandong Science and Technology Press, 50–51.
  • Shugar, D. (1952). The measurement of lysozyme activity and the ultra-violet inactivation of lysozyme. Biochimica et Biophysica Acta, 8, 302–309.
  • Singh, T., Bharmoria, P., Morikawa, M.-A., Kimizuka, N., & Kumar, A. (2012). Ionic liquids induced structural changes of bovine serum albumin in aqueous media: A detailed physicochemical and spectroscopic study. Journal of Physical Chemistry B, 116, 11924–11935. doi:10.1021/jp303609 h
  • Singh, T., Boral, S., Bohidar, H. B., & Kumar, A. (2010). Interaction of gelatin with room temperature ionic liquids: A detailed physicochemical study. Journal of Physical Chemistry B, 114, 8441–8448. doi:10.1021/jp102419f
  • Steiner, R. F. (1964). Structural transitions of lysozyme. Biochimica et Biophysica Acta (BBA)-Specialized Section on Biophysical Subjects, 79, 51–63. doi:http://dx.doi.org/10.1016/0926-6577(64)90038-5
  • Strassburg, S., Bermudez, H., & Hoagland, D. (2016). Lysozyme solubility and conformation in neat ionic liquids and their mixtures with water. Biomacromolecules, 17, 2233–2239. doi:10.1021/acs.biomac.6b00468
  • Summers, C. A., & Flowers, R. A. (2000). Protein renaturation by the liquid organic salt ethylammonium nitrate. Protein Science, 9, 2001–2008. doi:10.1110/ps.9.10.2001
  • Sur, S. S., Rabbani, L. D., Libman, L., & Breslow, E. (1979). Fluorescence studies of native and modified neurophysins. Effects of peptides and pH. Biochemistry, 18, 1026–1036.
  • Takekiyo, T., Yamazaki, K., Yamaguchi, E., Abe, H., & Yoshimura, Y. (2012). High ionic liquid concentration-induced structural change of protein in aqueous solution: A case STUDY of lysozyme. Journal of Physical Chemistry B, 116, 11092–11097. doi:10.1021/jp3057064
  • Teng, Y., Ji, F., Li, C., Yu, Z., & Liu, R. (2011). Interaction mechanism between 4-aminoantipyrine and the enzyme lysozyme. Journal of Luminescence, 131, 2661–2667. doi:10.1016/j.jlumin.2011.07.005
  • Tian, J., Zhao, Y., Liu, X., & Zhao, S. (2009). A steady-state and time-resolved fluorescence, circular dichroism study on the binding of myricetin to bovine serum albumin. Luminescence, 24, 386–393. doi:10.1002/bio.1124
  • Van Der Spoel, D., Lindahl, E., Hess, B., Groenhof, G., Mark, A. E., & Berendsen, H. J. (2005). GROMACS: Fast, flexible, and free. Journal of Computational Chemistry, 26, 1701–1718.
  • Vasantha, T., Attri, P., Venkatesu, P., & Devi, R. S. R. (2012). Structural basis for the enhanced stability of protein model compounds and peptide backbone unit in ammonium ionic liquids. Journal of Physical Chemistry B, 116, 11968–11978. doi:10.1021/jp308443f
  • Vrikkis, R. M., Fraser, K. J., Fujita, K., MacFarlane, D. R., & Elliott, G. D. (2009). Biocompatible ionic liquids: A new approach for stabilizing proteins in liquid formulation. Journal of biomechanical engineering, 131, 074514-1–074514-4.
  • Weaver, K. D., Vrikkis, R. M., Van Vorst, M. P., Trullinger, J., Vijayaraghavan, R., & Foureau, D. M. (2012). Structure and function of proteins in hydrated choline dihydrogen phosphate ionic liquid. Physical Chemistry Chemical Physics, 14, 790–801.
  • Wei, W., & Danielson, N. D. (2011). Fluorescence and circular dichroism spectroscopy of cytochrome c in alkylammonium formate ionic liquids. Biomacromolecules, 12, 290–297. doi:10.1021/bm1008052
  • Weingartner, H., Cabrele, C., & Herrmann, C. (2012). How ionic liquids can help to stabilize native proteins. Physical Chemistry Chemical Physics, 14, 415–426. doi:10.1039/c1cp21947b
  • Xie, M.-X., Xu, X.-Y., & Wang, Y.-D. (2005). Interaction between hesperetin and human serum albumin revealed by spectroscopic methods. Biochimica et Biophysica Acta, 1724, 215–224. doi:10.1016/j.bbagen.2005.04.009
  • Yamaguchi, S., Yamamoto, E., Tsukiji, S., & Nagamune, T. (2008). Successful control of aggregation and folding rates during refolding of denatured lysozyme by adding N-methylimidazolium cations with various N′-substituents. Biotechnology Progress, 24, 402–408. doi:10.1021/bp070207x
  • Zamorano, L. S., Pina, D. G., Gavilanes, F., Roig, M. G., Sakharov, I. Y., & Jadan, A. P. (2004). Two-state irreversible thermal denaturation of anionic peanut (Arachis hypogaea L.) peroxidase. Thermochimica Acta, 417, 67–73. doi:10.1016/j.tca.2004.01.018
  • Zhang, H., Hao, F., & Liu, R. (2013). Interactions of lead (II) acetate with the enzyme lysozyme: A spectroscopic investigation. Journal of Luminescence, 142, 144–149. doi:10.1016/j.jlumin.2013.03.061.
  • Zhang, H.-M., Tang, B.-P., & Wang, Y-Q. (2010). The interaction of lysozyme with caffeine, theophylline and theobromine in solution. Molecular Biology Reports, 37, 3127–3136.
  • Zhao, H. (2010). Methods for stabilizing and activating enzymes in ionic liquids – a review. Journal of Chemical Technology and Biotechnology, 85, 891–907. doi:10.1002/jctb.2375
  • Zhao, H. (2016). Protein stabilization and enzyme activation in ionic liquids: Specific ion effects. Journal of Chemical Technology & Biotechnology, 91, 25–50. doi:10.1002/jctb.4837
  • Zolfagharzadeh, M., Pirouzi, M., Asoodeh, A., Saberi, M. R., & Chamani, J. (2014). A comparison investigation of DNP-binding effects to HSA and HTF by spectroscopic and molecular modeling techniques. Journal of Biomolecular Structure and Dynamics, 32, 1936–1952.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.