212
Views
5
CrossRef citations to date
0
Altmetric
Research Articles

Effect of peroxynitrite on human serum albumin: a multi technique approach

, , , , , , & show all
Pages 2066-2076 | Received 15 May 2016, Accepted 22 Jun 2016, Published online: 28 Jul 2016

References

  • Ahmad, P., Moinuddin, & Ali, A., (2013). Peroxynitrite induced structural changes result in the generation of neo-epitope on human serum albumin. International Journal of Biological Macromolecules, 59, 349–356.10.1016/j.ijbiomac.2013.04.068
  • Ahmad, B., Parveen, S., & Khan, R. H. (2006). Effect of albumin conformation on the bonding of ciprofloxacin to human serum albumin: A novel approach directly assigning binding site. Biomacromolecule, 7, 1350–1356.10.1021/bm050996b
  • Bakaeean, B., Kabiri, M., Iranfar, H., Saberi, M. R., & Chamani, J. (2012). Binding effect of common ions to human serum albumin in the presence of Norfloxacin: Investigation with spectroscopic and zeta potential approaches. Journal of Solution Chemistry, 41, 1777–1801.10.1007/s10953-012-9895-3
  • Beal, M. F. (2002). Oxidatively modified proteins in aging and disease. Free Radical Biology and Medicine, 32, 797–803.10.1016/S0891-5849(02)00780-3
  • Beckman, J. S. (1996). Oxidative damage and tyrosine nitration from peroxynitrite. Chemical Research in Toxicology, 9, 836–844.10.1021/tx9501445
  • Chamani, J. (2006). Comparison of the conformational stability of the non-native α-helical intermediate of thiol-modified β-lactoglobulin upon interaction with sodium n-alkyl sulfates at two different pH. Journal of Colloid Interface Science, 299, 636–646.10.1016/j.jcis.2006.02.049
  • Chamani, J., Tafrishi, N., & Momen-Heravi, M. (2010). Characterization of the interaction between human lactoferrin and lomefloxacin at physiological condition: Multi-spectroscopic and modeling description. Journal of Luminescence, 130, 1160–1168.10.1016/j.jlumin.2010.02.014
  • Correia, M., Neves-Petersen, M. T., Jeppesen, P. B., Gregersen, S., & Petersen, S. B. (2012). UV-light exposure of insulin: Pharmaceutical implications upon covalent insulin dityrosine dimerization and disulphide bond photolysis. PLoS One, 7, e50733.10.1371/journal.pone.0050733
  • Danchenko, N., Satia, J. A., & Anthony, M. S. (2006). Epidemiology of systemic lupus erythematosus: A comparison of worldwide disease burden. Lupus, 15, 308–318.10.1191/0961203306lu2305xx
  • DeFilippis, V., Frasson, R., & Fontana, A. (2006). 3-Nitrotyrosine as a spectroscopic probe for investigating protein-protein interactions. Protein Science, 15, 976–986.10.1110/(ISSN)1469-896X
  • Duy, C., & Fitter, J. (2006). How aggregation and conformational scrambling of unfolded states govern fluorescence emission spectra. Biophysical Journal, 90, 3709–3711.
  • Galeazzi, I., Ronchi, P., Franceschi, C., & Giunta, S. (1999). In vitro peroxidase oxidation induces stable dimmers of beta-amyloid (1-42) through dityrosine bridge formation. Amyloid, 6, 7–13.10.3109/13506129908993282
  • Gilkeson, G., Oates, J., Goldman, D., & Petri, M. C. (1999). Correlation of serum measures of nitric oxide production with lupus disease activity. The Journal of Rheumatology, 26, 318–324.
  • Greenfield, N., & Fasman, G. D. (1969). Computed circular dichroism spectra for the evaluation of protein conformation. Biochemistry, 8, 4108–4116.10.1021/bi00838a031
  • Hensley, K., Maidt, M. L., Yu, Z., Sang, H., Markesbery, W. R., & Floyd, R. A. (1998). Electrochemical analysis of nitrotyrosine and dityrosine in Alzheimer brain indicate region-specific accumulation. The Journal of Neuroscience, 15, 8126–8132.
  • Hodges, G. R., Marwaha, J., Paul, T., & Ingold, K. U. (2000). A novel procedure for generating both nitric oxide and superoxide in situ from chemical sources at any chosen mole ratio. First aaplication: Tyrosine oxidation and a comparison with preformed peroxynitrite. Chemical Research in Toxicology, 13, 1287–1293.10.1021/tx0001272
  • Hughes, M. N., & Nicklin, H. G. (1968). The chemistry of pernitrites. Part I. Kinetics of decomposition of pernitrous acid. Journal of the Chemical Society A, 15, 450–452.10.1039/j19680000450
  • Ischiropoulos, H. (1998). Biological tyrosine nitration: A pathophysiological function of nitric oxide and reactive oxygen species. Archives of Biochemistry and Biophysics, 356, 1–11.10.1006/abbi.1998.0755
  • Ischiropoulos, H. (1999). Biological tyrosine nitration: A pathobiology function of nitric oxide and reactive oxygen species. Archives of Biochemistry and Biophysics, 356, 1–11.
  • Ischiropoulos, H. (2003). Biological selectivity and functional aspects of protein tyrosine nitration. Biochemical and Biophysical Research Communications, 305, 776–783.10.1016/S0006-291X(03)00814-3
  • Ischiropoulos, H., & Al-Mehdi, A. B. (1995). Peroxynitrite-mediated oxidative protein modifications. FEBS Letters, 364, 279–282.10.1016/0014-5793(95)00307-U
  • Ishiyama, S., Hiroe, M., Nishikawa, T., Abe, S., Shimojo, T., Ito, H., … Nakazawa, H., (1997). Nitric oxide contributes to the progression of myocardial damage in experimental autoimmune myocarditis in rats. Circulation, 95, 489–496.10.1161/01.CIR.95.2.489
  • Kaur, H., & Halliwell, B. (1994). Evidence of nitric oxide-mediated oxidative damage in chronic inflammation nitrotyrosine in serum and synovial fluid from rheumatoid patients. FEBS Letter, 350, 9–12.10.1016/0014-5793(94)00722-5
  • Khan, F., & Ali, R. (2006). Antibodies against nitric oxide damaged poly l-tyrosine and 3-nitrotyrosine levels in systemic lupus erythematosus. Journal of Biochemistry and Molecular Biology, 39, 189–196.10.5483/BMBRep.2006.39.2.189
  • Khorsand-Ahmadi, S., Mahmoodian-Moghadam, M., Mokaberi, P., Saberi, M. R., & Chamani, J. (2015). A comparison study of the interaction between β-lactoglobulin and retinol at two different conditions: Spectroscopic and molecular modeling approaches. Journal of Biomolecular Structure and Dynamics, 33, 1880–1898.10.1080/07391102.2014.977351
  • Kooy, N. W., Royall, J. A., Ye, Y. Z., Kelly, D. R., & Beckman, J. S. (1995). Evidence for in vivo peroxynitrite production in human acute lung injury. American Journal of Respiratory Critical Care Medicine, 151, 1250–1254.
  • Kurien, B. T., Hensley, K., Bachmann, M., & Scofield, R. H. (2006). Oxidatively modified autoantigens in autoimmune diseases. Free Radical Biology and Medicine, 41, 549–556.10.1016/j.freeradbiomed.2006.05.020
  • Kurien, B. T., & Scofield, R. H. (2008). Autoimmunity and oxidatively modified autoantigens. Autoimmunity Reviews, 7, 567–573.10.1016/j.autrev.2008.04.019
  • Lakowicz, J. R. (2006). Principles of fluorescence spectroscopy (3rd ed.). Maryland, MD: University of Maryland School of Medicine Baltimore, Springer.10.1007/978-0-387-46312-4
  • Leeuwenburgh, C., Hardy, M. M., Hazen, S. L., Wagner, P., Oh-ishi, S., Steinbrecher, U. P., & Heinecke, J. W. (1997). Reactive nitroigen intermediates promote low density lipoprotein oxidation in human atherosclerotic intima. Journal of Biological Chemistry, 272, 1433–1436.10.1074/jbc.272.3.1433
  • Levine, R. L., Williams, J. A., Stadtman, E. R., & Shacter, E. (1994). Carbonyl assays for determination of oxidatively modified proteins. Methods in Enzymology, 233, 346–357.10.1016/S0076-6879(94)33040-9
  • Liang, C. T., Huang, H. B., Wang, C. C., Chen, Y. R., Chang, C. F., Shiao, M. S., … Lin, T. H. (2016). L17A/F19A substitutions augment the α-helicity of β-amyloid peptide discordant segment. PLoS One, 11, e0154327.10.1371/journal.pone.0154327
  • Moosavi-Movahedi, A. A., Chamani, J., Gharanfoli, M., & Hakimelahi, G. H. (2004). Differential scanning calorimetric study of the molten globule state of cytochrome c induced by sodium n-dodecyl sulfate. Thermochimica Acta, 409, 137–144.10.1016/S0040-6031(03)00358-7
  • Moreno, J. J., & Pryor, W. A. (1992). Inactivation of alpha 1-proteinase inhibitor by peroxynitrite. Chemical Research in Toxicology, 5, 425–431.10.1021/tx00027a017
  • Morgan, P. E., Sturgess, A. D., & Davies, M. J. (2005). Increased levels of serum protein oxidation and correlation with disease activity in systemic lupus erythematosus. Arthritis and Rheumatology, 52, 2069–2079.10.1002/(ISSN)1529-0131
  • Moriel, P., & Abdalla, D. S. (1997). Nitrotyrosine bound to beta-VLDL- apoproteins: A biomarker of peroxynitrite formation in experimental atherosclerosis. Biochemical and Biophysical Research Communications, 232, 332–335.10.1006/bbrc.1997.6287
  • Oates, J. C., Christensen, E. F., Reilly, C. M., Self, S. E., & Gilkeson, G. S. (1999). Prospective measure of serum 3-nitrotyrosine levels in systemic lupus erythematosus: Correlation with disease activity. Proceedings of the Association of American Physicians, 111, 611–621.10.1046/j.1525-1381.1999.99110.x
  • Ohmori, H., & Kanayama, N. (2005). Immunogenicity of an inflammation-associated product, tyrosine nitrated self proteins. Autoimmunity Reviews, 4, 224–229.10.1016/j.autrev.2004.11.011
  • Ohshima, H., Friesen, M., Brouet, I., & Bartsch, H. (1990). Nitrotyrosine as a new marker for endogenous nitrosation and nitration of proteins. Food and Chemical Toxicology, 28, 647–652.10.1016/0278-6915(90)90173-K
  • Pennathur, S., Jackson-Lewis, V., Przedborski, S., & Heinecke, J. W. (1999). Mass spectrometric quantification of 3- nitrotyrosine, ortho-tyrosine and O, O’-dityrosine in brain tissue of 1-methyl-4-phenyl-1,2,3,6-tetrahydrpyridine-treated mice, a model of oxidative stress in Parkinson’s disease. The Journal of Biological Chemistry, 274, 34621–34628.10.1074/jbc.274.49.34621
  • Radi, R., Peluffo, G., Alvarez, M. N., Naviliat, M., & Cayota, A. (2001). Unraveling peroxynitrite formation in biological systems. Free Radical Biology and Medicine, 30, 463–488.10.1016/S0891-5849(00)00373-7
  • Rahnama, E., Mahmoodian-Moghaddam, M., Khorsand-Ahmadi, S., Saberi, M. R., & Chamani, J. (2015). Binding site identification of metformin to human serum albumin and glycated human serum albumin by spectroscopic and molecular modeling techniques: A comparison study. Journal of Biomolecular Structure and Dynamics, 3, 513–533.10.1080/07391102.2014.893540
  • Rasheed, Z., Ahmad, R., Rasheed, N., & Ali, R. (2007). Reactive oxygen species damaged human serum albumin in patients with hepatocellular carcinoma. Journal of Experimental and Clinical Cancer Research, 26, 395–404.
  • Reynolds, M. R., Berry, R. W., & Binder, L. I. (2005). Site-specific nitration and oxidative dityrosine bridging of the tau protein by peroxynitrite: Implications for Alzheimer’s disease. Biochemistry, 44, 1690–1700.10.1021/bi047982v
  • Sancataldo, G., Vetri, V., Foderà, V., Di Cara, G., Militello, V., & Leone, M. (2014). Oxidation enhances human serum albumin thermal stability and changes the routes of amyloid fibril formation. PLoS One, 9, e84552.10.1371/journal.pone.0084552
  • Shacter, E. (2000). Quantification and significance of protein oxidation in biological samples. Drug Metabolism Reviews, 32, 307–326.10.1081/DMR-100102336
  • Sokolovsky, M., Riordan, J. F., & Vallee, B. L. (1966). Tetranitromethane. A reagent for the nitration of tyrosyl residues in proteins. Biochemistry, 5, 3582–3589.10.1021/bi00875a029
  • Tanase, M., Urbanska, A. M., Zolla, V., Clement, C. C., Hung, L., Morozova, K., … Santambrogio, L. (2016). Role of carbonyl modifications on aging-associated protein aggregation. Scientific Reports, 6, Article ID 19311.
  • Thiagarajan, G., Lakshmanan, J., Chalasani, M., & Balasubramanian, D. (2004). Peroxynitrite reaction with eye lens proteins: Alpha-crystallin retains its activity despite modification. Investigative Ophthalmology and Visual Science, 45, 2115–2121.10.1167/iovs.03-0929
  • Vassar, P. S., & Culling, C. F. (1959). Fluorescent stains, with special reference to amyloid and connective tissues. Archives of Pathology, 68, 487–498.
  • Wang, G., Pierangeli, S. S., Papalardo, E., Ansari, G. A., & Khan, M. F. (2010). Markers of oxidative and nitrosative stress in systemic lupus erythematosus: Correlation with disease activity. Arthritis Rheumatology, 62, 2064–2072.
  • Zohoorian-Abootorabi, T., Sanee, H., Iranfar, H., Saberi, M. R., & Chamani, J. (2012). Separate and simultaneous binding effects through a non-cooperative behaviour between cyclophosphamide hydrochloride and fluoxymesterone upon interaction with human serum albumin: Multi-spectroscopic and molecular modeling approaches. Spectrochmica Acta Part A: Molecular and Biomolecular Spectroscopy, 88, 177–191.10.1016/j.saa.2011.12.026
  • Zolese, G., Falcioni, G., Bertoli, E., Galeazzi, R., Wozniak, M., Wypych, Z., & Ambrosini, A., (2000). Steady-state and time resolved fluorescence of albumin interacting with N-oleylethanolamine, a component of the endogenous N-acylethanolamine. Proteins, 40, 39–48.10.1002/(ISSN)1097-0134

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.