363
Views
9
CrossRef citations to date
0
Altmetric
Research Articles

Computational characterization of residue couplings and micropolymorphism-induced changes in the dynamics of two differentially disease-associated human MHC class-I alleles

&
Pages 724-740 | Received 15 Nov 2016, Accepted 07 Feb 2017, Published online: 01 Mar 2017

References

  • Abualrous, E. T., Fritzsche, S., Hein, Z., Al-Balushi, M. S., Reinink, P., Boyle, L. H., … Springer, S. (2015). F pocket flexibility influences the tapasin dependence of two differentially disease-associated MHC Class I proteins. European Journal of Immunology, 45, 1248–1257. doi:10.1002/eji.201445307
  • Amadei, A., Ceruso, M. A., & Di Nola, A. (1999). On the convergence of the conformational coordinates basis set obtained by the essential dynamics analysis of proteins’ molecular dynamics simulations. Proteins: Structure, Function, and Genetics, 36, 419–424. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/10450083 10.1002/(ISSN)1097-0134
  • Amadei, A., Linssen, A. B., & Berendsen, H. J. (1993). Essential dynamics of proteins. Proteins: Structure, Function, and Genetics, 17, 412–425. doi:10.1002/prot.340170408
  • Bailey, A., Dalchau, N., Carter, R., Emmott, S., Phillips, A., Werner, J. M., & Elliott, T. (2015). Selector function of MHC I molecules is determined by protein plasticity. Scientific Reports, 5, 14928. doi:10.1038/srep14928
  • Bailey, A., van Hateren, A., Elliott, T., & Werner, J. M. (2014). Two polymorphisms facilitate differences in plasticity between two chicken major histocompatibility complex class i proteins. PLoS ONE, 9, e89657. doi:10.1371/journal.pone.0089657
  • Beerbaum, M., Ballaschk, M., Erdmann, N., Schnick, C., Diehl, A., Uchanska-Ziegler, B., … Schmieder, P. (2013). NMR spectroscopy reveals unexpected structural variation at the protein-protein interface in MHC class I molecules. Journal of Biomolecular NMR, 57, 167–178. doi:10.1007/s10858-013-9777-z
  • Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., … Bourne, P. E. (2000). The protein data bank. Nucleic Acids Research, 28, 235–242.10.1093/nar/28.1.235
  • Biddison, W. E. & Martin, R. (2001). Peptide binding motifs for MHC class I and II molecules. In John E. Coligan, et al. (Eds.), Current Protocols in Immunology, 36, A.1I.1–A.1I.7. doi:10.1002/0471142735.ima01is36
  • Blanco-Gelaz, M. A., Suárez-Alvarez, B., Díaz-Peña, R., & López-Larrea, C. (2009). HLA-B27 polymorphism at position 116 critically influences the association with TAP/tapasin, intracellular trafficking and conformational homodimers formation. Molecular Immunology, 46, 1304–1311. doi:10.1016/j.molimm.2008.11.023
  • Blum, J. S., Wearsch, P. A., & Cresswell, P. (2013). Pathways of antigen processing. Annual Review of Immunology, 31, 443–473. doi:10.1146/annurev-immunol-032712-095910
  • Bradley, M. J., Chivers, P. T., & Baker, N. A. (2008). Molecular dynamics simulation of the Escherichia coli NikR protein: Equilibrium conformational fluctuations reveal interdomain allosteric communication pathways. Journal of Molecular Biology, 378, 1155–1173. doi:10.1016/j.jmb.2008.03.010
  • Dédier, S., Reinelt, S., Reitinger, T., Folkers, G., & Rognan, D. (2000). Thermodynamic stability of HLA-B*2705. Peptide complexes. Effect of peptide and major histocompatibility complex protein mutations. The Journal of Biological Chemistry, 275, 27055–27061. doi:10.1074/jbc.M002777200
  • DuBay, K. H., Bothma, J. P., & Geissler, P. L. (2011). Long-range intra-protein communication can be transmitted by correlated side-chain fluctuations alone. PLoS Computational Biology, 7, e1002168. doi:10.1371/journal.pcbi.1002168
  • Edidin, M., Achilles, S., Zeff, R., & Wei, T. (1997). Probing the stability of class I major histocompatibility complex (MHC) molecules on the surface of human cells. Immunogenetics, 46, 41–45. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/9148787 10.1007/s002510050240
  • Fabian, H., Huser, H., Loll, B., Ziegler, A., Naumann, D., & Uchanska-Ziegler, B. (2010). HLA–B27 heavy chains distinguished by a micropolymorphism exhibit differential flexibility. Arthritis & Rheumatism, 62, 978–987. doi:10.1002/art.27316
  • Falk, K., Rötzschke, O., Stevanovié, S., Jung, G., & Rammensee, H. G. (1991). Allele-specific motifs revealed by sequencing of self-peptides eluted from MHC molecules. Nature, 351, 290–296. doi:10.1038/351290a0
  • Fernando, M. M. A., Stevens, C. R., Walsh, E. C., De Jager, P. L., Goyette, P., Plenge, R. M., … Rioux, J. D. (2008). Defining the role of the MHC in autoimmunity: A review and pooled analysis. PLoS Genetics, 4, e1000024. doi:10.1371/journal.pgen.1000024
  • Fiorillo, M. T., Greco, G., Maragno, M., Potolicchio, I., Monizio, A., Dupuis, M. L., & Sorrentino, R. (1998). The naturally occurring polymorphism Asp116 → His116 , differentiating the ankylosing spondylitis-associated HLA-B*2705 from the non-associated HLA-B*2709 subtype, influences peptide-specific CD8 T cell recognition. European Journal of Immunology, 28, 2508–2516. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/9710228 10.1002/(ISSN)1521-4141
  • Fiorillo, M. T., Ruckert, C., Hulsmeyer, M., Sorrentino, R., Saenger, W., Ziegler, A., & Uchanska-Ziegler, B. (2005). Allele-dependent similarity between viral and self-peptide presentation by HLA-B27 subtypes. Journal of Biological Chemistry, 280, 2962–2971. doi:10.1074/jbc.M410807200
  • Fisette, O., Wingbermühle, S., Tampé, R., & Schäfer, L. V. (2016). Molecular mechanism of peptide editing in the tapasin-MHC I complex. Scientific Reports, 6, 19085. doi:10.1038/srep19085
  • Fusco, C., Azzarone, R., Penta, R., Canossi, A., Di Iulio, B., Toriello, M., … Papola, F. (2015). HLA-B*38:55Q: A new alternatively expressed allele identified in a three-generation Italian family. International Journal of Immunogenetics, 42, 294–296. doi:10.1111/iji.12208
  • Gakamsky, D. M., Bjorkman, P. J., & Pecht, I. (1996). Peptide interaction with a class I major histocompatibility complex-encoded molecule: Allosteric control of the ternary complex stability. Biochemistry, 35, 14841–14848. Retrieved from http://www.scopus.com/inward/record.url?eid=2-s2.0-0030446828&partnerID=tZOtx3y1 10.1021/bi961707u
  • Gao, G. F., Tormo, J., Gerth, U. C., Wyer, J. R., McMichael, A. J., Stuart, D. I., … Jakobsen, B. K. (1997). Crystal structure of the complex between human CD8alpha(alpha) and HLA-A2. Nature, 387, 630–634. doi:10.1038/42523
  • Ghodke, Y., Joshi, K., Chopra, A., & Patwardhan, B. (2005). HLA and disease. European Journal of Epidemiology, 20, 475–488. doi:10.1007/s10654-005-5081-x
  • Gough, S. C. L. & Simmonds, M. J. (2007). The HLA region and autoimmune disease: Associations and mechanisms of action. Current Genomics, 8, 453–465. doi:10.2174/138920207783591690
  • Gras, S., Burrows, S. R., Turner, S. J., Sewell, A. K., McCluskey, J., & Rossjohn, J. (2012). A structural voyage toward an understanding of the MHC-I-restricted immune response: Lessons learned and much to be learned. Immunological Reviews, 250, 61–81. doi:10.1111/j.1600-065X.2012.01159.x
  • Harndahl, M., Rasmussen, M., Roder, G., & Buus, S. (2011). Real-time, high-throughput measurements of peptide-MHC-I dissociation using a scintillation proximity assay. Journal of Immunological Methods, 374, 5–12. doi:10.1016/j.jim.2010.10.012
  • Harndahl, M., Rasmussen, M., Roder, G., Dalgaard Pedersen, I., Sørensen, M., Nielsen, M., & Buus, S. (2012). Peptide-MHC class I stability is a better predictor than peptide affinity of CTL immunogenicity. European Journal of Immunology, 42, 1405–1416. doi:10.1002/eji.201141774
  • Hawse, W. F., Gloor, B. E., Ayres, C. M., Kho, K., Nuter, E., Baker, B. M., & Ayers, C. M. (2013). Peptide modulation of class I major histocompatibility complex protein molecular flexibility and the implications for immune recognition. Journal of Biological Chemistry, 288, 24372–24381. doi:10.1074/jbc.M113.490664
  • Hirv, K., Pannicke, U., Mytilineos, J., & Schwarz, K. (2006). Disulfide bridge disruption in the α2 domain of the HLA class I molecule leads to low expression of the corresponding antigen. Human Immunology, 67, 589–596. doi:10.1016/j.humimm.2006.04.010
  • Hulsmeyer, M., Hillig, R. C., Volz, A., Ruhl, M., Schroder, W., Saenger, W., … Uchanska-Ziegler, B. (2002). HLA-B27 subtypes differentially associated with disease exhibit subtle structural alterations. Journal of Biological Chemistry, 277, 47844–47853. doi:10.1074/jbc.M206392200
  • Hulsmeyer, M., Welfle, K., Pohlmann, T., Misselwitz, R., Alexiev, U., Welfle, H., … Ziegler, A. (2004). Thermodynamic and structural equivalence of two Hla-B27 subtypes complexed with a self-peptide. Journal of Molecular Biology, 346, 1367. doi:10.1016/J.JMB.2004.12.047
  • Infantes, S., Lorente, E., Barnea, E., Beer, I., Barriga, A., Lasala, F., … López, D. (2013). Natural HLA-B*2705 protein ligands with glutamine as Anchor Motif: Implications for HLA-B27 association with spondyloarthropathy. Journal of Biological Chemistry, 288, 10882–10889. doi:10.1074/jbc.M113.455352
  • Knapp, B., Demharter, S., Esmaielbeiki, R., & Deane, C. M. (2015). Current status and future challenges in T-cell receptor/peptide/MHC molecular dynamics simulations. Briefings in Bioinformatics, 16, 1035–1044. doi:10.1093/bib/bbv005
  • Kozono, H., Matsushita, Y., Ogawa, N., Kozono, Y., Miyabe, T., Sekiguchi, H., … Sasaki, Y. C. (2015). Single-molecule motions of MHC class II rely on bound peptides. Biophysical Journal, 108, 350–359. doi:10.1016/j.bpj.2014.12.004
  • Kumar, P., Vahedi-Faridi, A., Saenger, W., Merino, E., Lopez de Castro, J. A., Uchanska-Ziegler, B., & Ziegler, A. (2009). Structural basis for T cell alloreactivity among three HLA-B14 and HLA-B27 antigens. Journal of Biological Chemistry, 284, 29784–29797. doi:10.1074/jbc.M109.038497
  • Laugel, B., van den Berg, H. A., Gostick, E., Cole, D. K., Wooldridge, L., Boulter, J., … Sewell, A. K. (2007). Different T cell receptor affinity thresholds and CD8 coreceptor dependence govern cytotoxic T lymphocyte activation and tetramer binding properties. Journal of Biological Chemistry, 282, 23799–23810. doi:10.1074/jbc.M700976200
  • MacKerell, A. D., Bashford, D., Bellott, M., Dunbrack, R. L., Evanseck, J. D., Field, M. J., … Karplus, M. (1998). All-atom empirical potential for molecular modeling and dynamics studies of proteins. The Journal of Physical Chemistry B, 102, 3586–3616. doi:10.1021/jp973084f
  • Madden, D. R. (1995). The three-dimensional structure of peptide-MHC complexes. Annual Review of Immunology, 13, 587–622. doi:10.1146/annurev.iy.13.040195.003103
  • Narzi, D., Becker, C. M., Fiorillo, M. T., Uchanska-Ziegler, B., Ziegler, A., & Böckmann, R. A. (2012). Dynamical characterization of two differentially disease associated MHC class I proteins in complex with viral and self-peptides. Journal of Molecular Biology, 415, 429–442. doi:10.1016/j.jmb.2011.11.021
  • Neefjes, J., Jongsma, M. L. M., Paul, P., & Bakke, O. (2011). Towards a systems understanding of MHC class I and MHC class II antigen presentation. Nature Reviews. Immunology, 11, 823–836. doi:10.1038/nri3084
  • Omasits, U., Knapp, B., Neumann, M., Steinhauser, O., Stockinger, Hannes, Kobler, Rene, & Schreiner, Wolfgang (2008). Analysis of key parameters for molecular dynamics of pMHC molecules. Molecular Simulation, 34, 781–793. doi:10.1080/08927020802256298
  • Ostermeir, K., Springer, S., & Zacharias, M. (2015). Coupling between side chain interactions and binding pocket flexibility in HLA-B*44:02 molecules investigated by molecular dynamics simulations. Molecular Immunology, 63, 312–319. doi:10.1016/j.molimm.2014.07.021
  • Parker, K. C., Dibrino, M., Hull, L., & Coligan, J. E. (1992). The β2-microglobulin dissociation rate is an accurate measure of the stability of MHC class I heterotrimers and depends on which peptide is bound. Journal of Immunology, 149, 1896–1904. Retrieved from http://www.scopus.com/inward/record.url?eid=2-s2.0-0026709414&partnerID=tZOtx3y1
  • Phillips, J. C., Braun, R., Wang, W., Gumbart, J., Tajkhorshid, E., Villa, E., … Schulten, K. (2005). Scalable molecular dynamics with NAMD. Journal of Computational Chemistry, 26, 1781–1802. doi:10.1002/jcc.20289
  • Reche, P. A. & Reinherz, E. L. (2003). Sequence variability analysis of human class I and class II MHC molecules: Functional and structural correlates of amino acid polymorphisms. Journal of Molecular Biology, 331, 623–641. doi:10.1016/S0022-2836(03)00750-2
  • Saper, M. A., Bjorkman, P. J., & Wiley, D. C. (1991). Refined structure of the human histocompatibility antigen HLA-A2 at 2.6 Å resolution. Journal of Molecular Biology, 219, 277–319. doi:10.1016/0022-2836(91)90567-P
  • Schittenhelm, R. B., Sian, T. C. C. L. K., Wilmann, P. G., Dudek, N. L., & Purcell, A. W. (2015). Revisiting the arthritogenic peptide theory: Quantitative not qualitative changes in the peptide repertoire of HLA-B27 allotypes. Arthritis & Rheumatology, 67, 702–713. doi:10.1002/art.38963
  • Sethi, A., Eargle, J., Black, A. A., & Luthey-Schulten, Z. (2009). Dynamical networks in tRNA:protein complexes. Proceedings of the National Academy of Sciences, 106, 6620–6625. doi:10.1073/pnas.0810961106
  • Sethi, A., Tian, J., Derdeyn, C. A., Korber, B., & Gnanakaran, S. (2013). A mechanistic understanding of allosteric immune escape pathways in the HIV-1 envelope glycoprotein. PLoS Computational Biology, 9, e1003046. doi:10.1371/journal.pcbi.1003046
  • Sette, A., Sidney, J., del Guercio, M.-F., Southwood, S., Ruppert, J., Dahlberg, C., … Kubo, R. T. (1994). Peptide binding to the most frequent HLA-A class I alleles measured by quantitative molecular binding assays. Molecular Immunology, 31, 813–822. doi:10.1016/0161-5890(94)90019-1
  • Sherman, L. A. (2006). To each (MHC molecule) Its own (Binding Motif). The Journal of Immunology, 177, 2739–2740. doi:10.4049/jimmunol.177.5.2739
  • Shi, Y., Qi, J., Iwamoto, A., & Gao, G. F. (2011). Plasticity of human CD8αα binding to peptide–HLA-A*2402. Molecular Immunology, 48, 2198–2202. doi: 10.1016/j.molimm.2011.05.009
  • Shiina, T., Hosomichi, K., Inoko, H., & Kulski, J. K. (2009). The HLA genomic loci map: Expression, interaction, diversity and disease. Journal of Human Genetics, 54, 15–39. doi:10.1038/jhg.2008.5
  • Sieker, F., Springer, S., & Zacharias, M. (2007). Comparative molecular dynamics analysis of tapasin-dependent and -independent MHC class I alleles. Protein Science: A publication of the protein society, 16, 299–308. doi:10.1110/ps.062568407
  • Simmonds, M. J. & Gough, S. C. L. (2004). Genetic insights into disease mechanisms of autoimmunity. British Medical Bulletin, 71, 93–113. doi:10.1093/bmb/ldh032
  • Simon, Á., Dosztányi, Z., Rajnavölgyi, É., & Simon, I. (2000). Function-related regulation of the stability of MHC proteins. Biophysical Journal, 79, 2305–2313. doi:10.1016/S0006-3495(00)76476-9
  • Sollid, L. M., Pos, W., & Wucherpfennig, K. W. (2014). Molecular mechanisms for contribution of MHC molecules to autoimmune diseases. Current Opinion in Immunology, 31, 24–30. doi:10.1016/j.coi.2014.08.005
  • Starikow, E. B., Nilsson, L., Hülsmeyer, M., & Starikow, E. B. (2004). A single residue exchange between two HLA-B27 alleles triggers increased peptide flexibility. European Biophysics Journal, 33, 651–655. doi:10.1007/s00249-004-0390-7
  • Uchanska-Ziegler, B., Loll, B., Fabian, H., Hee, C. S., Saenger, W., Ziegler, A., & Seng, C. (2012). HLA class I-associated diseases with a suspected autoimmune etiology: HLA-B27 subtypes as a model system. European Journal of Cell Biology, 91, 274–286. doi:10.1016/j.ejcb.2011.03.003
  • Uchanska-Ziegler, B. & Ziegler, A. (2003). Ankylosing spondylitis: A β2m–deposition disease? Trends in Immunology, 24, 73–76. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/12547503 10.1016/S1471-4906(02)00028-5
  • Uchanska-Ziegler, B., Ziegler, A., & Schmieder, P. (2013). Structural and dynamic features of HLA-B27 subtypes. Current Opinion in Rheumatology, 25, 411–418. doi:10.1097/BOR.0b013e32836203ab
  • van Deutekom, H. W. M. & Keşmir, C. (2015). Zooming into the binding groove of HLA molecules: Which positions and which substitutions change peptide binding most? Immunogenetics, 67, 425–436. doi:10.1007/s00251-015-0849-y
  • van Hateren, A., Bailey, A., Werner, J. M., & Elliott, T. (2015). Plasticity of empty major histocompatibility complex class I molecules determines peptide-selector function. Molecular Immunology, 68, 98–101. doi:10.1016/j.molimm.2015.03.010
  • Vitiello, A., Potter, T., & Sherman, L. (1990). The role of beta 2-microglobulin in peptide binding by class I molecules. Science, 250, 1423–1426. doi:10.1126/science.2124002
  • Wan, S., Coveney, P., & Flower, D. R. (2004). Large-scale molecular dynamics simulations of HLA-A*0201 complexed with a tumor-specific antigenic peptide: Can the ?3 and ?2m domains be neglected? Journal of Computational Chemistry, 25, 1803–1813. doi:10.1002/jcc.20100
  • Warburton, R. J., Matsui, M., Rowland-Jones, S. L., Gammon, M. C., Katzenstein, G. E., Wei, T., … Frelinger, J. A. (1994). Mutation of the α2 domain disulfide bridge of the class I molecule HLA-A∗0201 Effect on maturation and peptide presentation. Human Immunology, 39, 261–271. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/8071101 10.1016/0198-8859(94)90269-0
  • Winkler, K., Winter, A., Rueckert, C., Uchanska-Ziegler, B., & Alexiev, U. (2007). Natural MHC class I polymorphism controls the pathway of peptide dissociation from HLA-B27 complexes. Biophysical Journal, 93, 2743–2755. doi:10.1529/biophysj.106.096602
  • Yanaka, S., Ueno, T., Shi, Y., Qi, J., Gao, G. F., Tsumoto, K., & Sugase, K. (2014a). Peptide-dependent conformational fluctuation determines the stability of the human leukocyte antigen class I complex. Journal of Biological Chemistry, 289, 24680–24690. doi:10.1074/jbc.M114.566174
  • Yanaka, S., Ueno, T., Shi, Y., Qi, J., Gao, G. F., Tsumoto, K., & Sugase, K. (2014b). Peptide-dependent conformational fluctuation determines the stability of the human leukocyte antigen class I complex. Journal of Biological Chemistry, 289, 24680–24690. doi:10.1074/jbc.M114.566174
  • Zhang, C., Anderson, A., & DeLisi, C. (1998). Structural principles that govern the peptide-binding motifs of class I MHC molecules. Journal of Molecular Biology, 281, 929–947. doi:10.1006/jmbi.1998.1982
  • Ziegler, A., Loll, B., Misselwitz, R., & Uchanska-Ziegler, B. (2009). Implications of structural and thermodynamic studies of HLA-B27 subtypes exhibiting differential association with ankylosing spondylitis. Advances in Experimental Medicine and Biology, 649, 177–195. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/19731629 10.1007/978-1-4419-0298-6

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.