134
Views
6
CrossRef citations to date
0
Altmetric
Research Articles

Exploring molecular structural requirement for AChE inhibition through multi-chemometric and dynamics simulation analyses

, ORCID Icon & ORCID Icon
Pages 1274-1285 | Received 09 Dec 2016, Accepted 10 Apr 2017, Published online: 28 Apr 2017

References

  • Akula, N., Lecanu, L., Greeson, J., & Papadopoulos, V. (2006). 3D QSAR studies of AChE inhibitors based on molecular docking scores and CoMFA. Bioorganic & Medicinal Chemistry Letters, 16, 6277–6280. doi:10.1016/j.bmcl.2006.09.030
  • Ali, M. A., Yar, M. S., Hasan, M. Z., Ahsan, M. J., & Pandian, S. (2009). Design, synthesis and evaluation of novel 5,6-dimethoxy-1-oxo-2,3-dihydro-1H-2-indenyl-3,4-substituted phenyl methanone analogues. Bioorganic & Medicinal Chemistry Letters, 19, 5075–5077. doi:10.1016/j.bmcl.2009.07.042
  • Ali, M. A., Ismail, R., Choon, T. S., Yoon, Y. K., Wei, A. C., & Pandian, S. (2010). Substituted spiro [2.3’] oxindolespiro [3.2’’]-5,6-dimethoxy-indane-1’’-one-pyrrolidine analogue as inhibitors of acetylcholinesterase. Bioorganic & Medicinal Chemistry Letters, 20, 7064–7066. doi:10.1016/j.bmcl.2010.09.108
  • Balaji, S., Prasanna, D. S., & Rangappa, K. S. (2013). Docking, QSAR and CoMFA studies on arecoline analogues as muscarinic acetylcholine receptor (mAChR) M1 agonists. Proceedings of the Indian National Science Academy, 79, 41–50.
  • Barnard, E. A. (1974). Peripheral nervous. In J. I. Hubbard (Ed.), The peripheral nervous system (pp. 201–224). New York, NY: Plenum.10.1007/978-1-4615-8699-9
  • Bas, D. C., Rogers, D. M., & Jensen, J. H. (2008). Very fast prediction and rationalization of pKa values for protein-ligand complexes. Proteins: Structure, Function, and Bioinformatics, 73, 765–783. doi:10.1002/prot.22102
  • Bernard, P. P., Kireev, D. B., Pintore, M., Chrétien, J. R., Fortier, P. L., & Froment, D. (2000). A CoMFA study of enantiomeric organophoshorus inhibitors of acetylcholinesterase. Journal of Molecular Modeling, 6, 618–629. doi:10.1007/s0089400060618
  • Bianchi, D. A., Hirschmann, G. S., Theoduloz, C., Bracca, A. B., & Kaufman, T. S. (2005). Synthesis of tricyclic analogs of stephaoxocanidine and their evaluation as acetylcholinesterase inhibitors. Bioorganic & Medicinal Chemistry Letters, 15, 2711–2715. doi:10.1016/j.bmcl.2005.04.005
  • Chaudhaery, S. S., Roy, K. K., Shakya, N., Saxena, G., Sammi, S. R., & Nazir, A. (2010). Novel carbamates as orally active acetylcholinesterase inhibitors found to improve scopolamine-induced cognition impairment: Pharmacophore-based virtual screening, synthesis, and pharmacology. Journal of Medicinal Chemistry, 53, 6490–6505. doi:10.1021/jm100573q
  • Cheung, J., Rudolph, M. J., Burshteyn, F., Cassidy, M. S., Gary, E. N., Love, J., … Height, J. J. (2012). Structures of human acetylcholinesterase in complex with pharmacologically important ligands. Journal of Medicinal Chemistry, 55, 10282–10286. doi:10.1021/jm300871x
  • de Souza, S. D., de Souza, A. M., de Sousa, A. C., Sodero, A. C., Cabral, L. M., & Albuquerque, M. G. (2012). Hologram QSAR Models of 4-[(Diethylamino)methyl]-phenol Inhibitors of Acetyl/Butyrylcholinesterase Enzymes as Potential Anti-Alzheimer Agents. Molecules, 17, 9529–9539. doi:10.3390/molecules17089529
  • Discovery studio 2.5. (2009) (a) LigandFit, (b) Pharmacophore. Retrieved from www.accelrys.com
  • Eslami, M., Hashemianzadeh, S. M., Bagherzadeh, K., & Sajadi, S. A. S. (2016). Molecular perception of interactions between bis(7)tacrine and cystamine-tacrine dimer with cholinesterases as the promising proposed agents for the treatment of Alzheimer’s disease. Journal of Biomolecular Structure and Dynamics, 34, 855–869. doi:10.1080/07391102.2015.1057526.
  • Everitt, B. S. & Dunn, G. (2001). Applied multivariate data analysis. London: Arnold.10.1002/9781118887486
  • Gonçalves, A. S., França, T. C. C., & Oliveira, O. V. (2016). Computational studies of acetylcholinesterase complexed with fullerene derivatives: A new insight for Alzheimer disease treatment. Journal of Biomolecular Structure and Dynamics, 34, 1307–1316. doi:10.1080/07391102.2015.1077345
  • Gurung, A. B., Aguan, K., Mitra, S., & Bhattacharjee, A. (2016). Identification of molecular descriptors for design of novel Isoalloxazine derivatives as potential Acetylcholinesterase inhibitors against Alzheimer’s disease. Journal of Biomolecular Structure and Dynamics, 1–14. doi:10.1080/07391102.2016.1192485
  • Han, S. Y., Mayer, S. C., Schweiger, E. J., Davis, B. M., & Joulleé, M. M. (1991). Synthesis and biological activity of galanthamine derivatives as acetylcholinesterase (AChE) inhibitors. Bioorganic & Medicinal Chemistry Letters, 1, 579–580. doi:10.1016/S0960-894X(01)81154-9
  • Huang, L., Luo, Z., He, F., Shi, A., Qin, F., & Li, X. (2010). Berberine derivatives, with substituted amino groups linked at the 9-position, as inhibitors of acetylcholinesterase/butyrylcholinesterase. Bioorganic & Medicinal Chemistry Letters, 20, 6649–6652. doi:10.1016/j.bmcl.2010.09.013
  • Jacquez, J. A. & Jacquez, G. M. (2002). Fisher’s randomization test and Darwin’s data – A footnote to the history of statistics. Mathematical Biosciences, 180, 23–28. doi:10.1016/S0025-5564(02)00123-2
  • Kallubai, M., Amineni, U., Mallavarapu, M., & Kadiyala, V. (2015). In Silico approach to support that p-nitrophenol monooxygenase from arthrobacter sp. Strain JS443 catalyzes the initial two sequential monooxygenations. Interdisciplinary Sciences, Computational Life Sciences, 7, 157–167. doi:10.1007/s12539-015-0018-x
  • Kanungo, T. M., Mount, D. M., Netanyahu, N. S., Piatko, C. D., Silverman, R., & Wu, A. Y. (2002). An efficient k-means clustering algorithm: analysis and implementation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24, 881–892. doi:10.1109/TPAMI.2002.1017616
  • Katzung, B. G. (2001). Basic and clinical pharmacology (pp. 75–91). Columbus, GA: The McGraw Hill Companies.
  • Krall, W. J., Sramek, J. J., & Cutler, N. R. (1999). Cholinesterase inhibitors: A therapeutic strategy for alzheimer disease. Annals of Pharmacotherapy, 33, 441–450. doi:10.1345/aph.18211
  • Kubinyi, H. (1997). QSAR and 3D QSAR in drug design Part 1: Methodology. Drug Discovery Today, 2, 457–467. doi:10.1016/S1359-6446(97)01079-9
  • Leal, F. D., Lima, C. H., de Alencastro, R. B., Castro, H. C., Rodrigues, C. R., & Albuquerque, M. G. (2015). Hologram QSAR models of a series of 6-arylquinazolin-4-Amine inhibitors of a new alzheimer’s disease target: Dual specificity tyrosine-phosphorylation-regulated kinase-1A enzyme. International Journal of Molecular Sciences, 16, 5235–5253. doi:10.3390/ijms16035235
  • Li, H., Robertson, A. D., & Jensen, J. H. (2005). Very fast empirical prediction and rationalization of protein pKa values. Proteins: Structure, Function, and Bioinformatics, 61, 704–721. doi:10.1002/prot.20660
  • Lu, X., Lv, M., Huang, K., Ding, K., & You, Q. (2012). Pharmacophore and molecular docking guided 3D-QSAR study of bacterial enoyl-ACP reductase (FabI) inhibitors. International Journal of Molecular Sciences, 13, 6620–6638. doi:10.3390/ijms13066620
  • Malik, R., Gupta, R., Srivastava, S., Choudhary, B. S., & Sharma, M. (2016). Design, synthesis and biological evaluation of selected 3-[3-(amino) propoxy] benzenamines as acetylcholinesterase inhibitors. Journal of Biomolecular Structure and Dynamics, 1–13. doi:10.1080/07391102.2016.1220330
  • Mohammadi, T. & Ghayeb, Y. (2017). Atomic insight into designed carbamate-based derivatives as acetylcholine esterase (AChE) inhibitors: A computational study by multiple molecular docking and molecular dynamics simulation. Journal of Biomolecular Structure and Dynamics, 1–13. doi:10.1080/07391102.2016.1268977
  • Palin, R., Clark, J. K., Cowley, P., Muir, A. W., Pow, E., & Prosser, A. B. (2002). Novel piperidinium and pyridinium agents as water-soluble acetylcholinesterase inhibitors for the reversal of neuromuscular blockade. Bioorganic & Medicinal Chemistry Letters, 12, 2569–2572. doi:10.1016/S0960-894X(02)00483-3
  • Pan, L., Tan, J. H., Hou, J. Q., Huang, S. L., Gu, L. Q., & Huang, Z. S. (2008). Design, synthesis and evaluation of isaindigotone derivatives as acetylcholinesterase and butyrylcholinesterase inhibitors. Bioorganic & Medicinal Chemistry Letters, 18, 3790–3793. doi:10.1016/j.bmcl.2008.05.039
  • Pradeepkiran, J. A., Kumar, K. K., Kumar, Y. N., & Bhaskar, M. (2015). Modeling, molecular dynamics, and docking assessment of transcription factor rho: A potential drug target in Brucella melitensis 16M. Drug Design, Development and Therapy, 9, 1897–1912. doi:10.2147/DDDT.S77020
  • RCSB Protein Data Bank. (2016). Retrieved from http://www.rcsb.org
  • Rahman, A. & Choudhary, M. I. (2001). Bioactive natural products as a potential source of new pharmacophores: A theory of memory. Pure and Applied Chemistry, 73, 555–560. doi:10.1351/pac200173030555
  • Ramar, V. & Pappu, S. (2016). Exploring the inhibitory potential of bioactive compound from Luffa acutangula against NF-κB—A molecular docking and dynamics approach. Computational Biology and Chemistry, 62, 29–35. doi:10.1016/j.compbiolchem.2016.03.006
  • Roy, K., Chakraborty, P., Mitra, I., Ojha, P. K., Kar, S., & Das, R. N. (2013). Some case studies on application of “rm2” metrics for judging quality of quantitative structure–activity relationship predictions: Emphasis on scaling of response data. Journal of Computational Chemistry, 34, 1071–1082. doi:10.1002/jcc.23231
  • Sabshin, M. D. (1997). Festschrift in honor of Melvin Sabshin, M.D., Medical Director American Psychiatric Association, 1974–1997. American Journal of Psychiatry, 154, 1–92. doi:10.1176/ajp.154.6.1
  • Sadashiva, C. T., Narendra Sharath Chandra, J. N., Ponnappa, K. C., Veerabasappa Gowda, T., & Rangappa, K. S. (2006). Synthesis and efficacy of 1-[bis(4-fluorophenyl)-methyl]piperazine derivatives for acetylcholinesterase inhibition, as a stimulant of central cholinergic neurotransmission in Alzheimer’s disease. Bioorganic & Medicinal Chemistry Letters, 16, 3932–3936. doi:10.1016/j.bmcl.2006.05.030
  • Saravanan, K., Kalaiarasi, C., & Kumaradhas, P. (2017). Understanding the conformational flexibility and electrostatic properties of curcumin in the active site of rhAChE via molecular docking, molecular dynamics, and charge density analysis. Journal of Biomolecular Structure and Dynamics, 1–21. doi:10.1080/07391102.2016.1264891
  • Sastry, G. M., Adzhigirey, M., Day, T., Annabhimoju, R., & Sherman, W. (2013). Protein and ligand preparation: Parameters, protocols, and influence on virtual screening enrichments. Journal of Computer-Aided Molecular Design, 27, 221–234. doi:10.1007/s10822-013-9644-8
  • Schott, Y., Decker, M., Rommelspacher, H., & Lehmann, J. (2006). 6-Hydroxy- and 6-methoxy-β-carbolines as acetyl- and butyrylcholinesterase inhibitors. Bioorganic & Medicinal Chemistry Letters, 16, 5840–5843. doi:10.1016/j.bmcl.2006.08.067
  • Schulze, M., Siol, O., Decker, M., & Lehmann, J. (2010). Bivalent 5,8,9,13b-tetrahydro-6H-isoquino[1,2-a]isoquinolines and -isoquinolinium salts: Novel heterocyclic templates for butyrylcholinesterase inhibitors. Bioorganic & Medicinal Chemistry Letters, 20, 2946–2949. doi:10.1016/j.bmcl.2010.03.011
  • Shao, D., Zou, C., Luo, C., Tang, X., & Li, Y. (2004). Synthesis and evaluation of tacrine-E2020 hybrids as acetylcholinesterase inhibitors for the treatment of Alzheimer’s disease. Bioorganic & Medicinal Chemistry Letters, 14, 4639–4642. doi:10.1016/j.bmcl.2004.07.005
  • Srivastava, V., Kumar, A., Mishra, B. N., & Siddiqi, M. I. (2008). CoMFA and CoMSIA 3D-QSAR analysis of DMDP derivatives as anti-cancer agents. Bioinformation, 2, 384–391.10.6026/bioinformation
  • Sybyl. 7.3 (2006) St. Louis: Tripos Inc. www.tripos.com.
  • Taha, M. O., Habash, M., Al-Hadidi, Z., Al-Bakri, A., Younis, K., & Sisan, S. (2011). Docking-based comparative intermolecular contacts analysis as new 3-D QSAR concept for validating docking studies and in silico screening: NMT and GP inhibitors as case studies. Journal of Chemical Information and Modeling, 51, 647–669. doi:10.1021/ci100368t
  • Takahashi, J., Hijikuro, I., Kihara, T., Murugesh, M. G., Fuse, S., & Tsumura, Y. (2010). Design, synthesis and evaluation of carbamate-modified (−)-N1-phenethylnorphysostigmine derivatives as selective butyrylcholinesterase inhibitors. Bioorganic & Medicinal Chemistry Letters, 20, 1721–1723. doi:10.1016/j.bmcl.2010.01.035
  • Tang, H., Ning, F. X., Wei, Y. B., Huang, S. L., Huang, Z. S., & Chan, A. S. (2007). Derivatives of oxoisoaporphine alkaloids: A novel class of selective acetylcholinesterase inhibitors. Bioorganic & Medicinal Chemistry Letters, 17, 3765–3768. doi:10.1016/j.bmcl.2007.04.015
  • Tyagi, C., Gupta, A., Goyal, S., Dhanjal, J., & Grover, A. (2014). Fragment based group QSAR and molecular dynamics mechanistic studies on arylthioindole derivatives targeting the α-β interfacial site of human tubulin. BMC Genomics, 15, S3. doi:10.1186/1471-2164-15-S9-S3
  • Valasani, K. R., Chaney, M. O., Day, V. W., & ShiDu Yan, S. (2013). Acetylcholinesterase inhibitors: Structure based design, synthesis, pharmacophore modeling, and virtual screening. Journal of Chemical Information and Modeling, 53, 2033–2046. doi:10.1021/ci400196z
  • Vitorović-Todorović, M. D., Koukoulitsa, C., Juranić, I. O., Mandić, L. M., & Drakulić, B. J. (2014). Structural modifications of 4-aryl-4-oxo-2-aminylbutanamides and their acetyl- and butyrylcholinesterase inhibitory activity. Investigation of AChE-ligand interactions by docking calculations and molecular dynamics simulations. European Journal of Medicinal Chemistry, 81, 158–175. doi:10.1016/j.ejmech.2014.05.008
  • Voet, D. & Voet, J. (1995). Serine proteases Biochemistry (2nd ed.). (p. 390). New York, NY: John Wiley.
  • Wen, H., Zhou, Y., Lin, C., Ge, H., Ma, L., & Wang, Z. (2007). Methyl 2-(2-(4-formylphenoxy)acetamido)-2-substituted acetate derivatives: A new class of acetylcholinesterase inhibitors. Bioorganic & Medicinal Chemistry Letters, 17, 2123–2125. doi:10.1016/j.bmcl.2007.01.091
  • Young, S., Fabio, K., Guillon, C., Mohanta, P., Halton, T. A., & Heck, D. E. (2010). Peripheral site acetylcholinesterase inhibitors targeting both inflammation and cholinergic dysfunction. Bioorganic & Medicinal Chemistry Letters, 20, 2987–2990. doi:10.1016/j.bmcl.2010.02.102
  • Yu, L., Cao, R., Yi, W., Yan, Q., Chen, Z., & Ma, L. (2010). Synthesis of 4-[(diethylamino)methyl]-phenol derivatives as novel cholinesterase inhibitors with selectivity towards butyrylcholinesterase. Bioorganic & Medicinal Chemistry Letters, 20, 3254–3258. doi:10.1016/j.bmcl.2010.04.059
  • Zaheer-ul-Haq, H., Wellenzohn, B., Tonmunphean, S., Khalid, A., Choudhary, M. I., & Rode, B. M. (2003). 3D-QSAR Studies on natural acetylcholinesterase inhibitors of Sarcococca saligna by comparative molecular field analysis (CoMFA). Bioorganic & Medicinal Chemistry Letters, 13, 4375–4380. doi:10.1016/j.bmcl.2003.09.034
  • Zhou, A., Hu, J., Wang, L., Zhong, G., Pan, J., & Wu, Z. (2015). Combined 3D-QSAR, molecular docking, and molecular dynamics study of tacrine derivatives as potential acetylcholinesterase (AChE) inhibitors of Alzheimer’s disease. Journal of Molecular Modeling, 21, 1. doi:10.1007/s00894-015-2797-8
  • Zhu, J., Li, X., Zhang, S., Ye, H., Zhao, H., Jin, H., & Han, W. (2016). Exploring stereochemical specificity of phosphotriesterase by MM-PBSA and MM-GBSA calculation and steered molecular dynamics simulation. Journal of Biomolecular Structure and Dynamics, 1–12. doi:10.1080/07391102.2016.1244494

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.