535
Views
14
CrossRef citations to date
0
Altmetric
Research Articles

Structural basis of pesticide detection by enzymatic biosensing: a molecular docking and MD simulation study

, , &
Pages 1402-1416 | Received 03 Feb 2017, Accepted 20 Apr 2017, Published online: 18 May 2017

References

  • Abass, K., Lämsä, V., Reponen, P., Küblbeck, J., Honkakoski, P., Mattila, S., … Hakkola, J. (2012). Characterization of human cytochrome P450 induction by pesticides. Toxicology, 294, 17–26. doi:10.1016/j.tox.2012.01.010
  • Andreescu, S., & Marty, J.-L. (2006). Twenty years research in cholinesterase biosensors: From basic research to practical applications. Biomolecular Engineering, 23(1), 1–15. doi:10.1016/j.bioeng.2006.01.001
  • Bathinapatla, A., Kanchi, S., Singh, P., Sabela, M. I., & Bisetty, K. (2016). An ultrasensitive performance enhanced novel cytochrome c biosensor for the detection of rebaudioside A. Biosensors and Bioelectronics, 77, 116–123. doi:10.1016/j.bios.2015.09.004
  • Botkin, N. D., & Turova, V. L. (2004). Mathematical models of a biosensor. Applied Mathematical Modelling, 28, 573–589. doi:10.1016/j.apm.2003.10.012
  • Caspers, H. (1981). F. L. McEwen and G. R. Stephenson. ‘The Use and Significance of Pesticides in the Environment’. – 538 pp. New York-Chichester-Brisbane-Toronto: John Wiley & Sons 1979. ISBN 0-471-03903-9. £ 16.75. Internationale Revue der gesamten Hydrobiologie und Hydrographie, 66, 108. doi:10.1002/iroh.19810660109
  • Chapalamadugu, S., & Chaudhry, G. R. (1992). Microbiological and biotechnological aspects of metabolism of carbamates and organophosphates. Critical Reviews in Biotechnology, 12, 357–389. doi:10.3109/07388559209114232
  • Dabulytė-Bagdonavičienė, J., Ivanauskas, F., & Razumas, V. (2011). The computational modelling of the kinetics of ascorbic acid palmitate hydrolysis by lipase considering diffusion. Central European Journal of Chemistry, 9, 712–719. doi:10.2478/s11532-011-0053-3
  • De Almeida, J. S. F. D., Cuya Guizado, T. R., Guimarães, A. P., Ramalho, T. C., Gonçalves, A. S., de Koning, M. C., & França, T. C. C. (2016). Docking and molecular dynamics studies of peripheral site ligand–oximes as reactivators of sarin-inhibited human acetylcholinesterase. Journal of Biomolecular Structure and Dynamics, 34, 2632–2642. doi:10.1080/07391102.2015.1124807
  • De Flora, S., Viganò, L., D’Agostini, F., Camoirano, A., Bagnasco, M., Bennicelli, C., … Arillo, A. (1993). Multiple genotoxicity biomarkers in fish exposed in situ to polluted river water. Mutation Research/Genetic Toxicology, 319, 167–177. doi:10.1016/0165-1218(93)90076-P
  • de Liñán Carral, C. (2015). Vademécum de productos fitosanitarios y nutricionales 2015. Madrid, Spain: Ediciones Agrotécnicas.
  • Deo, R. P., Wang, J., Block, I., Mulchandani, A., Joshi, K. A., Trojanowicz, M., … Lin, Y. (2005). Determination of organophosphate pesticides at a carbon nanotube/organophosphorus hydrolase electrochemical biosensor. Analytica Chimica Acta, 530, 185–189. doi:10.1016/j.aca.2004.09.072
  • Dhull, V., Gahlaut, A., Dilbaghi, N., & Hooda, V. (2013). Acetylcholinesterase biosensors for electrochemical detection of organophosphorus compounds: A review. Biochemistry Research International, 2013, 731501. doi:10.1155/2013/731501
  • Donarski, W. J., Dumas, D. P., Heitmeyer, D. P., Lewis, V. E., & Raushel, F. M. (1989). Structure-activity relationships in the hydrolysis of substrates by the phosphotriesterase from Pseudomonas diminuta. Biochemistry, 28, 4650–4655.10.1021/bi00437a021
  • Fang, H., Yu, Y., Chu, X., Wang, X., Yang, X., & Yu, J. (2009). Degradation of chlorpyrifos in laboratory soil and its impact on soil microbial functional diversity. Journal of Environmental Sciences, 21, 380–386. doi:10.1016/S1001-0742(08)62280-9
  • Fang, J., Wu, P., Yang, R., Gao, L., Chao, L., Wang, D., … Du, G.-H. (2014). Inhibition of acetylcholinesterase by two genistein derivatives: Kinetic analysis, molecular docking and molecular dynamics simulation. Acta Pharmaceutica Sinica B, 4, 430–437. doi:10.1016/j.apsb.2014.10.002
  • Farag, A. T., Radwan, A. H., Sorour, F., El Okazy, A., El-Agamy, E.-S., & El-Sebae, A. E.-K. (2010). Chlorpyrifos induced reproductive toxicity in male mice. Reproductive Toxicology, 29, 80–85. doi:10.1016/j.reprotox.2009.10.003
  • Fendick, E. A., Mather-Mihaich, E., Houck, K. A., Clair, M. B. S., Faust, J. B., Rockwell, C. H., & Owens, M. (1990). Ecological toxicology and human health effects of heptachlor. In G. W. Ware (Ed.), Reviews of environmental contamination and toxicology: Continuation of residue reviews (pp. 61–142). New York, NY: Springer.
  • Freire, R. S., Pessoa, C. A., Mello, L. D., & Kubota, L. T. (2003). Direct electron transfer: An approach for electrochemical biosensors with higher selectivity and sensitivity. Journal of the Brazilian Chemical Society, 14, 230–243.10.1590/S0103-50532003000200008
  • Frisch, M. J., Trucks, G. W., Bernhard Schlegel, H., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., … Nakatsuji, H. (2009). Gaussian 09. Wallingford, CT: Gaussian.
  • Fukuto, T. Roy (1990). Mechanism of action of organophosphorus and carbamate insecticides. Environmental Health Perspectives, 87, 245–254. doi:10.2307/3431032
  • Gold, L. S., Slone, T. H., Manley, N. B., & Bernstein, L. (1991). Target organs in chronic bioassays of 533 chemical carcinogens. Environmental Health Perspectives, 93, 233–246.10.1289/ehp.9193233
  • Grieshaber, D., MacKenzie, R., Vörös, J., & Reimhult, E. (2008). Electrochemical biosensors – sensor principles and architectures. Sensors, 8, 1400–58.
  • Guan, S., Zhao, L., Jin, H., Shan, N., Han, W., Wang, S., & Shan, Y. (2017). Binding modes of phosphotriesterase-like lactonase complexed with δ-nonanoic lactone and paraoxon using molecular dynamics simulations. Journal of Biomolecular Structure and Dynamics, 35, 273–286. doi:10.1080/07391102.2016.1142899
  • Jaffrezic-Renault, N. (2001). New trends in biosensors for organophosphorus pesticides. Sensors, 1, 60–74. doi:10.3390/s10100060
  • Jokar, M., Safaralizadeh, M. H., Hadizadeh, F., Rahmani, F., & Kalani, M. R. (2016). Design and evaluation of an apta-nano-sensor to detect Acetamiprid in vitro and in silico. Journal of Biomolecular Structure and Dynamics, 34, 2505–2517. doi:10.1080/07391102.2015.1123188
  • Jokar, M., Safaralizadeh, M. H., Hadizadeh, F., Rahmani, F., & Kalani, M. R. (2017). Apta-nanosensor preparation and in vitro assay for rapid Diazinon detection using a computational molecular approach. Journal of Biomolecular Structure and Dynamics, 35, 343–353. doi:10.1080/07391102.2016.1140594
  • Kostaropoulos, I., Papadopoulos, A. I., Metaxakis, A., Boukouvala, E., & Papadopoulou-Mourkidou, E. (2001). Glutathione S-transferase in the defence against pyrethroids in insects. Insect Biochemistry and Molecular Biology, 31, 313–319. doi:S0965174800001235 [pii]
  • Krasiński, A., Radić, Z., Manetsch, R., Raushel, J., Taylor, P., Sharpless, K. B., & Kolb, H. C. (2005). In situ selection of lead compounds by click chemistry: Target-guided optimization of acetylcholinesterase inhibitors. Journal of American Chemical Society, 127, 6686–6692. doi:10.1021/ja043031t
  • Kumari, R., Kumar, R., & Lynn, A. (2014). g_mmpbsa – a GROMACS tool for high-throughput MM-PBSA calculations. Journal of Chemical Information and Modeling, 54, 1951–1962. doi:10.1021/ci500020m
  • Kumari, I., Chaudhary, N., Sandhu, P., Ahmed, M., & Akhter, Y. (2016). Structural and mechanistic analysis of engineered trichodiene synthase enzymes from Trichoderma harzianum: Towards higher catalytic activities empowering sustainable agriculture. Journal of Biomolecular Structure and Dynamics, 34, 1176–1189. doi:10.1080/07391102.2015.1073632
  • Kuroda, K., Yamaguchi, Y., & Endo, G. (1992). Mitotic toxicity, sister chromatid exchange, and rec assay of pesticides. Archives of Environmental Contamination and Toxicology, 23, 13–18. doi:10.1007/bf00225990
  • Lin, G., Lee, Y. R., Liu, Y. C., & Wu, Y. G. (2005). Ortho effects for inhibition mechanisms of butyrylcholinesterase by o-substituted phenyl N-butyl carbamates and comparison with acetylcholinesterase, cholesterol esterase, and lipase. Chemical Research in Toxicology, 18, 1124–1131. doi:10.1021/tx050014o
  • Luque de Castro, M. D., & Herrera, M. C. (2003). Enzyme inhibition-based biosensors and biosensing systems: Questionable analytical devices. Biosensors and Bioelectronics, 18, 279–294. doi:10.1016/S0956-5663(02)00175-6
  • Manetsch, R., Krasiński, A., Radić, Z., Raushel, J., Taylor, P., Sharpless, K. B., & Kolb, H. C. (2004). In situ click chemistry: Enzyme inhibitors made to their own specifications. Journal of American Chemical Society, 126, 12809–12818. doi:10.1021/ja046382g
  • Meng, X., Wei, J., Ren, X., Ren, J., & Tang, F. (2013). A simple and sensitive fluorescence biosensor for detection of organophosphorus pesticides using H2O2-sensitive quantum dots/bi-enzyme. Biosensors and Bioelectronics, 47, 402–407. doi:10.1016/j.bios.2013.03.053
  • Mionetto, N., Marty, J.-L., & Karube, I. (1994). Acetylcholinesterase in organic solvents for the detection of pesticides: Biosensor application. Biosensors and Bioelectronics, 9, 463–470. doi:10.1016/0956-5663(94)90035-3
  • Miranhshah, R. (2011). Revolutionary thought. Chandigarh: The Tribune.
  • Mohammadi, T., & Ghayeb, Y. (2016). Atomic insight into designed carbamate-based derivatives as acetylcholine esterase (AChE) inhibitors: A computational study by multiple molecular docking and molecular dynamics simulation. Journal of Biomolecular Structure and Dynamics, 1–13. doi:10.1080/07391102.2016.1268977
  • Montesinos, T., Pérez-Munguia, S., Valdez, F., & Marty, J.-L. (2001). Disposable cholinesterase biosensor for the detection of pesticides in water-miscible organic solvents. Analytica Chimica Acta, 431, 231–237. doi:10.1016/S0003-2670(00)01235-6
  • Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., & Olson, A. J. (2009). AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of Computational Chemistry, 30, 2785–2791. doi:10.1002/jcc.21256
  • Murillo, L., Hamon, A., Es-Salah-Lamoureux, Z., Itier, V., Quinchard, S., & Lapied, B. (2011). Inhibition of protein kinase C decreases sensitivity of GABA receptor subtype to fipronil insecticide in insect neurosecretory cells. NeuroToxicology, 32, 828–835. doi:10.1016/j.neuro.2011.05.015
  • Naz, F., Shahbaaz, M., Bisetty, K., Islam, A., Ahmad, F., & Hassan, M. I. (2015). Designing new kinase inhibitor derivatives as therapeutics against common complex diseases: structural basis of microtubule affinity-regulating kinase 4 (MARK4) inhibition. OMICS: A Journal of Integrative Biology, 19, 700–711. doi:10.1089/omi.2015.0111
  • Naz, F., Shahbaaz, M., Khan, S., Bisetty, K., Islam, A., Ahmad, F., & Hassan, M. I. (2015). PKR-inhibitor binds efficiently with human microtubule affinity-regulating kinase 4. Journal of Molecular Graphics and Modelling, 62, 245–252. doi:10.1016/j.jmgm.2015.10.009
  • Neudert, G., & Klebe, G. (2011). DSX : A knowledge-based scoring function for the assessment of protein–ligand complexes. Journal of Chemical Information and Modeling, 51, 2731–2745. doi:10.1021/ci200274q
  • Odukkathil, G., & Vasudevan, N. (2013). Toxicity and bioremediation of pesticides in agricultural soil. Reviews in Environmental Science and Bio/Technology, 12, 421–444. doi:10.1007/s11157-013-9320-4
  • Oostenbrink, C., Villa, A., Mark, A. E., & van Gunsteren, W. F. (2004). A biomolecular force field based on the free enthalpy of hydration and solvation: The GROMOS force-field parameter sets 53A5 and 53A6. Journal of Computational Chemistry, 25, 1656–1676. doi:10.1002/jcc.20090
  • Poet, T. S., Wu, H., Kousba, A. A., & Timchalk, C. (2003). In vitro rat hepatic and intestinal metabolism of the organophosphate pesticides chlorpyrifos and diazinon. Toxicological Sciences, 72, 193–200. doi:10.1093/toxsci/kfg035kfg035
  • Pronk, S., Pall, S., Schulz, R., Larsson, P., Bjelkmar, P., Apostolov, R., Hess, B., et al. (2013). GROMACS 4.5: A high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics, 29, 845–854. doi:10.1093/bioinformatics/btt055btt055
  • Pundir, C. S., & Chauhan, N. (2012). Acetylcholinesterase inhibition-based biosensors for pesticide determination: A review. Analytical Biochemistry, 429, 19–31. doi:10.1016/j.ab.2012.06.025
  • Rawlings, N. C., Cook, S. J., & Waldbillig, D. (1998). Effects of the pesticides carbofuran, chlorpyrifos, dimethoate, lindane, triallate, trifluralin, 2,4-D, and pentachlorophenol on the metabolic endocrine and reproductive endocrine system in ewes. Journal of Toxicology and Environmental Health A, 54, 21–36.
  • Rehana, Z., Malik, A., & Ahmad, M. (1995). Mutagenic activity of the ganges water with special reference to the pesticide pollution in the river between Kachla to Kannauj (UP), India. Mutation Research/Genetic Toxicology, 343, 137–144. doi:10.1016/0165-1218(95)90079-9
  • Ronkainen, N. J., Halsall, H., & Heineman, W. R. (2010). Electrochemical biosensors. Chemical Society Reviews, 39, 1747–1763. doi:10.1039/b714449k
  • Sabela, M. I., Mpanza, T., Kanchi, S., Sharma, D., & Bisetty, K. (2016). Electrochemical sensing platform amplified with a nanobiocomposite of L-phenylalanine ammonia-lyase enzyme for the detection of capsaicin. Biosensors and Bioelectronics, 83, 45–53. doi:10.1016/j.bios.2016.04.037
  • Sassolas, A., Prieto-Simón, B., & Marty, J.-L. (2012). Biosensors for pesticide detection: New trends. American Journal of Analytical Chemistry, 3, 210–232. doi:10.4236/ajac.2012.33030
  • Savary, C. C., Josse, R., Bruyere, A., Guillet, F., Robin, M.-A., & Guillouzo, A. (2014). Interactions of endosulfan and methoxychlor involving CYP3A4 and CYP2B6 in human HepaRG cells. Drug Metabolism and Disposition, 42, 1235–1240. doi:10.1124/dmd.114.057786
  • Schulze, H., Muench, S. B., Villatte, F., Schmid, R. D., & Bachmann, T. T. (2005). Insecticide detection through protein engineering of nippostrongylus brasiliensis acetylcholinesterase B. Analytical Chemistry, 77, 5823–5830. doi:10.1021/ac050383p
  • Schüttelkopf, A. W., & van Aalten, D. M. (2004). PRODRG: A tool for high-throughput crystallography of protein–ligand complexes. Acta Crystallographica Section D Biological Crystallography, 60, 1355–1363. doi:10.1107/S0907444904011679S0907444904011679
  • Sharma, P., Thakur, S., & Awasthi, P. (2016). In silico and bio assay of juvenile hormone analogs as an insect growth regulator against Galleria mellonella (wax moth) – Part I. Journal of Biomolecular Structure and Dynamics, 34, 1061–1078. doi:10.1080/07391102.2015.1056549
  • Simonian, A. L., Rainina, E. I., & Wild, J. R. (1997). A new approach for discriminative detection of organophosphate neurotoxins in the presence of other cholinesterase inhibitors. Analytical Letters, 30, 2453–2468. doi:10.1080/00032719708001757
  • Skládal, P., Nunes, G. S., Yamanaka, H., & Ribeiro, M. L. (1997). Detection of carbamate pesticides in vegetable samples using cholinesterase-based biosensors. Electroanalysis, 9, 1083–1087. doi:10.1002/elan.1140091410
  • de Sousa, G., Fontaine, F., Pralavorio, M., Botta-Fridlund, D., Letreut, Y., & Rahmani, R. (1997). Insecticide cytotoxicity and CYP1A1/2 induction in primary human and rat hepatocyte cultures. Toxicology in Vitro, 11, 451–457. doi: S0887-2333(97)00061-1
  • Stanyon, C. A., & Bernard, O. (1999). LIM-kinase1. The International Journal of Biochemistry & Cell Biology, 31, 389–394.10.1016/S1357-2725(98)00116-2
  • Suwalsky, M., Rodríguez, C., Villena, F., & Sotomayor, C. P. (2005). Human erythrocytes are affected by the organochloride insecticide chlordane. Food and Chemical Toxicology, 43, 647–654. doi:10.1016/j.fct.2004.12.010
  • Thévenot, D. R., Toth, K., Durst, R. A., & Wilson, G. S. (2001). Electrochemical biosensors: Recommended definitions and classification. Biosensors and Bioelectronics, 16, 121–131. doi:10.1016/S0956-5663(01)00115-4
  • Usmani, K. A., Hodgson, E., & Rose, R. L. (2004). In vitro metabolism of carbofuran by human, mouse, and rat cytochrome P450 and interactions with chlorpyrifos, testosterone, and estradiol. Chemico-Biological Interactions, 150, 221–232. doi:10.1016/j.cbi.2004.09.015
  • Vanommeslaeghe, K., Hatcher, E., Acharya, C., Kundu, S., Zhong, S., Shim, J., Darian, E. (2010). CHARMM general force field: A force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. Journal of Computational Chemistry, 31, 671–690. doi:10.1002/jcc.21367
  • Velasco-Garcia, M. N., & Mottram, T. (2003). Biosensor technology addressing agricultural problems. Biosystems Engineering, 84(1), 1–12. doi:10.1016/S1537-5110(02)00236-2
  • Verma, N., & Bhardwaj, A. (2015). Biosensor technology for pesticides – A review. Applied Biochemistry and Biotechnology, 175, 3093–3119. doi:10.1007/s12010-015-1489-2
  • Verma, N., & Dhillon, S. S. (2003). Biosensors for monitoring insecticides and herbicides – A survey. International Journal of Environmental Studies, 60, 29–43. doi:10.1080/00207230304751
  • Wang, Z., Zhao, Z., Abou-Zaid, M. M., Arnason, J. T., Liu, R., Walshe-Roussel, B., … Wei, Q. (2014). Inhibition of insect glutathione S-transferase (GST) by conifer extracts. Archives of Insect Biochemistry and Physiology, 87, 234–249. doi:10.1002/arch.21192
  • Yao, T.-T., Xie, J.-F., Liu, X.-G., Cheng, J.-L., Zhu, C.-Y., Zhao, J.-H., & Dong, X.-W. (2017). Integration of pharmacophore mapping and molecular docking in sequential virtual screening: Towards the discovery of novel JAK2 inhibitors. RSC Advances, 7, 10353–10360. doi:10.1039/c6ra24959k
  • Yogeswaran, U., & Chen, S.-M. (2008). A review on the electrochemical sensors and biosensors composed of nanowires as sensing material. Sensors, 8, 290–313. doi:10.3390/s8010290
  • Zielkiewicz, J. (2005). Structural properties of water: Comparison of the SPC, SPCE, TIP4P, and TIP5P models of water. The Journal of Chemical Physics, 123, 104501. doi:10.1063/1.2018637

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.