128
Views
15
CrossRef citations to date
0
Altmetric
Research Articles

A QM/QTAIM detailed look at the Watson–Crick↔wobble tautomeric transformations of the 2-aminopurine·pyrimidine mispairs

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 1649-1665 | Received 22 Mar 2017, Accepted 11 May 2017, Published online: 28 Jul 2017

References

  • Alemán, E. A. , de Silva, C. , Patrick, E. M. , Musier-Forsyth, K. , & Rueda, D. (2014). Single-molecule fluorescence using nucleotide analogs: A proof-of-principle. The Journal of Physical Chemistry Letters , 5 , 777–781. doi:10.1021/jz4025832
  • Arabi, A. , & Matta, C. F. (2011). Effects of external electric fields on double proton transfer kinetics in the formic acid dimer. Physical Chemistry Chemical Physics , 13 , 13738–13748. doi:10.1039/c1cp20175a
  • Bader, R. F. W. (1990). Atoms in molecules: A quantum theory . Oxford: Oxford University Press.
  • Bonnist, E. Y. M. , Liebert, K. , Dryden, D. T. F. , Jeltsch, A. , & Jones, A. C. (2012). Using the fluorescence decay of 2-aminopurine to investigate conformational change in the recognition sequence of the EcoRV DNA-(adenine-N6)-methyltransferase on enzyme binding. Biophysical Chemistry , 160 , 28–34. doi:10.1016/j.bpc.2011.09.001
  • Brovarets’, O. O. (2015). Microstructural mechanisms of the origin of the spontaneous point mutations (DrSci thesis). Taras Shevchenko National University of Kyiv, Kyiv, Ukraine.
  • Brovarets’, O. O. , & Hovorun, D. M. (2010a). Molecular mechanisms of the mutagenic action of 2-aminopurine on DNA. Ukrainica Bioorganica Acta , 9 , 11–17. Retrieved from http://www.bioorganica.org.ua/UBAdenovo/pubs_8_1_10/Brovaretc_2_UBA.pdf
  • Brovarets’, O. O. , & Hovorun, D. M. (2010b). Quantum-chemical investigation of tautomerization ways of Watson–Crick DNA base pair guanine·cytosine. Ukrainian Biochemical Journal , 82, 55–60. Retrieved from http://ubj.biochemistry.org.ua/images/stories/pdf/ubj3_2010/Brovarets_82_3.pdf
  • Brovarets’, O. O. , & Hovorun, D. M. (2010c). Quantum-chemical investigation of the elementary molecular mechanisms of pyrimidine-purine transversions. Ukrainian Biochemical Journal , 82 , 57–67. Retrieved from http://ubj.biochemistry.org.ua/images/stories/pdf/UBJ_%20N%205_2010/Brovarets-2_82_5.pdf
  • Brovarets’, O. O. , & Hovorun, D. M. (2011a). Intramolecular tautomerization and the conformational variability of some classical mutagens – cytosine derivatives: Quantum chemical study. Biopolymers and Cell , 27 , 221–230. doi:10.7124/bc.0000BD
  • Brovarets’, O. O. , & Hovorun, D. M. (2011b). IR vibrational spectra of H-bonded complexes of adenine, 2-aminopurine and 2-aminopurine+ with cytosine and thymine: Quantum-chemical study. Optics & Spectroscopy , 111 , 750–757. doi:10.1134/S0030400X11120058
  • Brovarets’, O. O. , & Hovorun, D. M. (2013). Atomistic understanding of the C·T mismatched DNA base pair tautomerization via the DPT: QM and QTAIM computational approaches. Journal of Computational Chemistry , 34 , 2577–2590. doi:10.1002/jcc.23412
  • Brovarets’, O. O. , & Hovorun, D. M. (2014a). Can tautomerization of the A·T Watson–Crick base pair via double proton transfer provoke point mutations during DNA replication? A comprehensive QM and QTAIM analysis. Journal of Biomolecular Structure & Dynamics , 32 , 127–154. doi:10.1080/07391102.2012.755795
  • Brovarets’, O. O. , & Hovorun, D. M. (2014b). How does the long G·G* Watson–Crick DNA base mispair comprising keto and enol tautomers of the guanine tautomerise? The results of a QM/QTAIM investigation. Physical Chemistry Chemical Physics , 6 , 15886–15899. doi:10.1039/c4cp01241k
  • Brovarets’, O. O. , & Hovorun, D. M. (2014c). DPT tautomerisation of the G·Asyn and A*·G*syn DNA mismatches: A QM/QTAIM combined atomistic investigation. Physical Chemistry Chemical Physics , 16 , 9074–9085. doi:10.1039/c4cp00488d
  • Brovarets’, O. O. , & Hovorun, D. M. (2015a). The nature of the transition mismatches with Watson–Crick architecture: the G*·T or G·T* DNA base mispair or both? A QM/QTAIM perspective for the biological problem. Journal of Biomolecular Structure & Dynamics , 33 , 925–945. doi:10.1080/07391102.2014.924879
  • Brovarets’, O. O. , & Hovorun, D. M. (2015b). Wobble↔Watson–Crick tautomeric transitions in the homo-purine DNA mismatches: A key to the intimate mechanisms of the spontaneous transversions. Journal of Biomolecular Structure & Dynamics , 33 , 2710–2715. doi:10.1080/07391102.2015.1077737
  • Brovarets’, O. O. , & Hovorun, D. M. (2015c). Tautomeric transition between wobble A·C DNA base mispair and Watson–Crick-like A·C* mismatch: microstructural mechanism and biological significance. Physical Chemistry Chemical Physics , 17 , 15103–15110. doi:10.1039/c5cp01568e.
  • Brovarets’, O. O. , & Hovorun, D. M. (2015d). A novel conception for spontaneous transversions caused by homo-pyrimidine DNA mismatches: A QM/QTAIM highlight. Physical Chemistry Chemical Physics , 17 , 21381–21388. doi:10.1039/c5cp03211c.
  • Brovarets’, O. O. , & Hovorun, D. M. (2015e). Novel physico-chemical mechanism of the mutagenic tautomerisation of the Watson–Crick-like A·G and C·T DNA base mispairs: A quantum-chemical picture. RCS Advances , 5 , 66318–66333. doi:10.1039/C5RA11773A
  • Brovarets’, O. O. , & Hovorun, D. M. (2015f). New structural hypostases of the A·T and G·C Watson–Crick DNA base pairs caused by their mutagenic tautomerisation in a wobble manner: A QM/QTAIM prediction. RSC Advances , 5 , 99594–99605. doi:10.1039/C5RA19971A
  • Brovarets’, O. O. , & Hovorun, D. M. (2016). By how many tautomerisation routes the Watson–Crick-like A·C* DNA base mispair is linked with the wobble mismatches? A QM/QTAIM vision from a biological point of view. Structural Chemistry , 27 , 119–131. doi:10.1007/s11224-015-0687-4
  • Brovarets’, O. O. , & Pérez-Sánchez, H. E. (2016a). Whether the amino-imino tautomerism of 2-aminopurine is involved into its mutagenicity? Results of a thorough QM investigation. RSC Advances , 110 , 108255–108264. doi:10.1039/C6RA24277D
  • Brovarets’, O. O. , & Pérez-Sánchez, H. E. (2016b). Whether 2-aminopurine induces incorporation errors at the DNA replication? A quantum-mechanical answer on the actual biological issue. Journal of Biomolecular Structure & Dynamics , 1–14. doi:10.1080/07391102.2016.1253504
  • Brovarets’, O. O. , Pérez-Sánchez, H. E. , & Hovorun, D. M. (2016). Structural grounds for the 2-aminopurine mutagenicity: A novel insight into the old problem of the replication errors. RSC Advances , 6 , 99546–99557. doi:10.1039/C6RA17787E
  • Brovarets’, O. O. , Voiteshenko, I. S. , Pérez-Sánchez, H. E. , & Hovorun, D. M. (2017). A QM/QTAIM research under the magnifying glass of the DPT tautomerisation of the wobble mispairs involving 2-aminopurine. New Journal of Chemistry , doi:10.1039/C7NJ00717E
  • Brovarets’, O. O. , Zhurakivsky, R. O. , & Hovorun, D. M. (2010). Is there adequate ionization mechanism of the spontaneous transitions? Quantum-chemical investigation. Biopolymers and Cell , 26 , 398–405. doi:10.7124/bc.00016F
  • Brovarets’, O. O. , Zhurakivsky, R. O. , & Hovorun, D. M. (2013a). DPT tautomerization of the long A∙A* Watson–Crick base pair formed by the amino and imino tautomers of adenine: combined QM and QTAIM investigation. Journal of Molecular Modeling , 19 , 4223–4237. doi:10.1007/s00894-013-1880-2
  • Brovarets’, O. O. , Zhurakivsky, R. O. , & Hovorun, D. M. (2013b). The physico-chemical mechanism of the tautomerisation via the DPT of the long Hyp*·Hyp Watson–Crick base pair containing rare tautomer: A QM and QTAIM detailed look. Chemical Physics Letters , 578 , 126–132. doi:10.1016/j.cplett.2013.05.067
  • Brovarets’, O. O. , Zhurakivsky, R. O. , & Hovorun, D. M. (2014). Is the DPT tautomerization of the long A·G Watson–Crick DNA base mispair a source of the adenine and guanine mutagenic tautomers? A QM and QTAIM response to the biologically important question. Journal of Computational Chemistry , 35 , 451–466. doi:10.1002/jcc.23515
  • Brovarets’, O. O. , Zhurakivsky, R. O. , & Hovorun, D. M. (2015). DPT tautomerisation of the wobble guanine·thymine DNA base mispair is not mutagenic: QM and QTAIM arguments. Journal of Biomolecular Structure and Dynamics , 33 , 674–689. doi:10.1080/07391102.2014.897259
  • Cerón-Carrasco, J. P. , & Jacquemin, D. (2013). Electric field induced DNA damage: An open door for selective mutations. Chemical Communications , 49 , 7578–7580. doi:10.1039/C3CC42593B
  • Dallmann, A. , Dehmel, L. , Peters, T. , Mügge, C. , Griesinger, C. , Tuma, J. , & Ernsting, N. P. (2010). 2-aminopurine incorporation perturbs the dynamics and structure of DNA. Angewandte Chemie International Edition , 49 , 5989–5992. doi:10.1002/anie.201001312
  • Dohet, C. , Wagner, R. , & Radman, M. (1985). Repair of defined single base-pair mismatches in Escherichia coli . Proceedings of the National Academy of Sciences of the United States of America , 82 , 503–505. Retrieved from http://www.pnas.org/content/82/2/503.full.pdf 10.1073/pnas.82.2.503
  • Došlić, N. , Abdel-Latif, M. K. , Kühn, O. (2011). Laser control of single and double proton transfer reactions. Acta Chimica Slovenica , 58 , 411–424. Retrieved from http://acta-arhiv.chem-soc.si/58/58-3-411.pdf
  • Duarte, F. , Vöhringer-Martinez, E. , & Toro-Labbé, A. (2011). Insights on the mechanism of proton transfer reactions in amino acids. Physical Chemistry Chemical Physics , 13 , 7773–7782. doi:10.1039/C0CP02076A
  • El-Sayed, A. A. , Tamara Molina, A. , Álvarez-Ros, M. C. , & Alcolea Palafox, M. (2015). Conformational analysis of the anti-HIV Nikavir prodrug: comparisons with AZT and Thymidine, and establishment of structure–activity relationships/tendencies in other 6′-derivatives. Journal of Biomolecular Structure & Dynamics , 33 , 723–748. doi:10.1080/07391102.2014.909743
  • Elvin, A. , Alemán, E. A. , & Rueda, D. (2011). 2-aminopurine single-molecule fluorescence. Biophysical Journal , 100 , 474a. doi:10.1016/j.bpj.2010.12.2777
  • Espinosa, E. , Molins, E. , & Lecomte, C. (1998). Hydrogen bond strengths revealed by topological analyses of experimentally observed electron densities. Chemical Physics Letters , 285 , 170–173. doi:10.1016/S0009-2614(98)00036-0.
  • Fagan, P. A. , Fàbrega, C. , Eritja, R. , Goodman, M. F. , & Wemmer, D. E. (1996). NMR study of the conformation of the 2-aminopurine:cytosine mismatch in DNA. Biochemistry , 35 , 4026–4033. doi:10.1021/bi952657g
  • Fazakerley, G. V. , Sowers, L. C. , Eritja, R. , Kaplan, B. E. , & Goodman, M. F. (1987). NMR studies on an oligodeoxynucleotide containing 2-aminopurine opposite adenine. Biochemistry , 26 , 5641–5646. doi:10.1021/bi00392a009
  • Frisch, M. J. , Trucks, G. W. , Schlegel, H.B. , Scuseria, G. E. , Robb, M. A. , Cheeseman, J. R. , … Pople, J. A. (2010). GAUSSIAN 09 (Revision B.01) . Wallingford, CT: Gaussian Gaussian.
  • Glendening, E. D. , Reed, A. E. , Carpenter, J. E. , Weinhold, F. (1994). NBO (3.1 ed.). Madison, WI : Theoretical Chemistry Institute, University of Wisconsin.
  • Goodman, M. F. , Hopkins, R. , & Gore, W. C. (1977). 2-Aminopurine-induced mutagenesis in T4 bacteriophage: A model relating mutation frequency to 2-aminopurine incorporation in DNA. Proceedings of the National Academy of Sciences of the United States of America , 74 , 4806–4810. doi:10.1073/pnas.74.11.4806
  • Guest, C. R. (1991). Dynamics of mismatched base pairs in DNA. Biochemistry , 30 , 3271–3279. doi:10.1021/bi00227a015
  • Guzmán-Angel, D. , Inostroza-Rivera, R. , Gutiérrez-Oliva, S. , Herrera, B. , & Toro-Labbé, A. (2016). Role of water in intramolecular proton transfer reactions of formamide and thioformamide. Theoretical Chemistry Accounts , 135 , 37–46. doi:10.1007/s00214-015-1774-8
  • Hargis, J. C. , Vöhringer-Martinez, E. , Woodcock, H. L. , Toro-Labbé, A. , & Schaefer, H. F., 3rd (2011). Characterizing the mechanism of the double proton transfer in the formamide dimer. The Journal of Physical Chemistry A , 115 , 2650–2657. doi:10.1021/jp111834v
  • Holz, B. , Weinhold, E. , Klimasauskas, S. , & Serva, S. (1998). 2-aminopurine as a fluorescent probe for DNA base flipping by methyltransferases. Nucleic Acids Research , 26 , 1076–1083. doi:10.1093/nar/26.4.1076
  • Hratchian, H. P. , & Schlegel, H.B. (2005). Finding minima, transition states, and following reaction pathways on ab initio potential energy surfaces. In C.E. Dykstra , G. Frenking , K.S. Kim , & G. Scuseria (Eds.), Theory and applications of computational chemistry (pp. 195–249). Amsterdam: Elsevier. doi:10.1016/B978-044451719-7/50053-6
  • Jones, A. C. , & Neely, R. K. (2015). 2-aminopurine as a fluorescent probe of DNA conformation and the DNA–enzyme interface. Quarterly Reviews of Biophysics , 48 , 244–279. doi:10.1017/S0033583514000158
  • Keith, T. A. (2010). AIMAll (Version 10.07.01) . Retrieved from aim.tkgristmill.com
  • Kondratyuk, I. V. , Samijlenko, S. P. , Kolomiets’, I. M. , & Hovorun, D. M. (2000). Prototropic molecular-zwitterionic tautomerism of xanthine and hypoxanthine. Journal of Molecular Structure , 523 , 109–118. doi:10.1016/S0022-2860(99)00385-3
  • Law, S. M. , Eritja, R. , Goodman, M. F. , & Breslauer, K. J. (1996). Spectroscopic and calorimetric characterization of DNA duplexes containing 2-aminopurine. Biochemistry , 35 , 12329–12337. doi:10.1021/bi9614545
  • Lenz, T. , Bonnist, E. Y. M. , Pljevaljčić, G. , Neely, R. K. , Dryden, D. T. F. , Scheidig, A. J. , … Weinhold, E. (2007). 2-aminopurine flipped into the active site of the adenine-specific DNA methyltransferase M.TaqI: Crystal structures and time-resolved fluorescence. Journal of the American Chemical Society , 129 , 6240–6248. doi:10.1021/ja069366n
  • Mata, I. , Alkorta, I. , Espinosa, E. , & Molins, E. (2011). Relationships between interaction energy, intermolecular distance and electron density properties in hydrogen bonded complexes under external electric fields. Chemical Physics Letters , 507 , 185–189. doi:10.1016/j.cplett.2011.03.055
  • Matta, C. F. , & Hernández-Trujillo, J. (2005). Bonding in polycyclic aromatic hydrocarbons in terms of the electron density and of electron delocalization. The Journal of Physical Chemistry A , 109 , 10798–10798. doi:10.1021/jp034952d
  • Millar, D. P. (1996). Fluorescence studies of DNA and RNA structure and dynamics. Current Opinion in Structural Biology , 6 , 322–326. doi:10.1016/S0959-440X(96)80050-9
  • Neely, R. K. , Tamulaitis, G. , Chen, K. , Kubala, M. , Siksnys, V. , & Jones, A. C. (2009). Time-resolved fluorescence studies of nucleotide flipping by restriction enzymes. Nucleic Acids Research , 37 , 6859–6870. doi:10.1093/nar/gkp688
  • Palafox, M. A. (2014). Molecular structure differences between the antiviral nucleoside analogue 5-iodo-2′-deoxyuridine and the natural nucleoside 2′-deoxythymidine using MP2 and DFT methods: conformational analysis, crystal simulations, DNA pairs and possible behaviour. Journal of Biomolecular Structure & Dynamics , 32 , 831–851. doi:10.1080/07391102.2013.789402
  • Pitsikas, P. , Patapas, J. M. , & Cupples, C. G. (2004). Mechanism of 2-aminopurine-stimulated mutagenesis in Escherichia coli . Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis , 550 , 25–32. doi:10.1016/j.mrfmmm.2004.01.008
  • Platonov, M. O. , Samijlenko, S. P. , Sudakov, O. O. , Kondratyuk, I. V. , & Hovorun, D. M. (2005). To what extent can methyl derivatives be regarded as stabilized tautomers of xanthine? Spectrochimica Acta, Part A: Molecular and Biomolecular Spectroscopy , 62 , 112–114. doi:10.1016/j.saa.2004.12.012
  • Rachofsky, E. L. , Osman, R. , & Ross, J. B. A. (2011). Probing structure and dynamics of DNA with 2-aminopurine: effects of local environment on fluorescence.  Biochemistry , 40 , 946–956. doi:10.1021/bi001664o
  • Raczyńska, E. D. , Makowski, M. , Hallmann, M. , & Kamińska, B. (2015). Geometric and energetic consequences of prototropy for adenine and its structural models – A review. RSC Advances , 5 , 36587–36604. doi:10.1039/C4RA17280A
  • Raczyńska, E. D. , Makowski, M. , Zientara-Rytter, K. , Kolczyńska, K. , Stępniewski, T. M. , & Hallmann, M. (2013). Quantum-chemical studies on the favored and rare tautomers of neutral and redox adenine. The Journal of Physical Chemistry A , 117 , 1548–1559. doi:10.1021/jp3081029
  • Ramaekers, R. , Adamowicz, L. , & Maes, G. (2002). Tautomery and H-bonding characteristics of 2-aminopurine: A combined experimental and theoretical study. The European Physical Journal D , 20 , 375–388. doi:10.1140/epjd/e2002-00160-9
  • Reha-Krantz, L. J. (2009). The use of 2-aminopurine fluorescence to study DNA polymerase function. Methods in Molecular Biology , 521 , 381–396. doi:10.1007/978-1-60327-815-7_21
  • Reha-Krantz, L. J. , Hariharan, Ch , Subuddhi, U. , Xia, Sh , Zhao, Ch , Beckman, J. , … Konigsberg, W. (2011). Structure of the 2-aminopurine-cytosine base pair formed in the polymerase active site of the RB69 Y567A-DNA polymerase. Biochemistry , 50 , 10136–10149. doi:10.1021/bi2014618
  • Rein, R. , & Garduno, R. (1976). Energetics and mechanism of 2-aminopurine induced mutations. In J.-L. Calais , O. Goscinski , J. Linderberg , Y. Öhrn (Eds.), Quantum science (pp. 549–560). NewYork, NY: Springer. doi:10.1007/978-1-4757-1659-7_40
  • Rist, M. J. , & Marino, J. P. (2002). Fluorescent nucleotide base analogs as probes of nucleic acid structure, dynamics and interactions. Current Organic Chemistry , 6 , 775–793. doi:10.2174/1385272023373914
  • Ronen, A. (1980). 2-Aminopurine. Mutation Research/Reviews in Genetic Toxicology , 75 , 1–47. doi:10.1016/0165-1110(80)90026-3
  • Saenger, W. (1984). Principles of nucleic acid structure . New York, NY : Springer.10.1007/978-1-4612-5190-3
  • Sherer, E. C. , & Cramer, S. J. (2001). Quantum chemical characterization of the cytosine: 2-aminopurine base pair. Journal of Computational Chemistry , 22 , 1167–1179. doi:10.1002/jcc.1075
  • Sowers, L. C. , Boulard, Y. , & Fazakerley, G. V. (2000). Multiple structures for the 2-aminopurine-cytosine mispair. Biochemistry , 39 , 7613–7620. doi:10.1021/bi992388k
  • Sowers, L. C. , Eritja, R. , Chen, F. M. , Khwaja, T. , Kaplan, B. E. , Goodman, M. F. , & Victor Fazakerley, G. (1989). Characterization of the high pH wobble structure of the 2-aminopurine·cytosine mismatch by N-15 NMR spectroscopy. Biochemical Biophysical Research Communications , 165 , 89–92. doi:10.1016/0006-291X(89)91037-1
  • Sowers, L. C. , Fazakerley, G. V. , Eritja, R. , Kaplan, B. E. , & Goodman, M. F. (1986). Base pairing and mutagenesis: Observation of a protonated base pair between 2-aminopurine and cytosine in an oligonucleotide by proton NMR. Proceedings of the National Academy of Sciences of the United States of America , 83 , 5434–5438. doi:10.1073/pnas.83.15.5434
  • Tleugabulova, D. , & Reha-Krantz, L. J. (2007). Probing DNA polymerase-DNA interactions: Examining the template strand in exonuclease complexes using 2-aminopurine fluorescence and acrylamide quenching. Biochemistry , 46 , 6559–6569. doi:10.1021/bi700380a
  • Tolosa, S. , Sánchez, J. P. , Sansón, J. A. , & Hidalgo, A. (2017). Steered molecular dynamic simulations of the tautomeric equilibria in solution of DNA bases. Journal of Molecular Liquids , 237 , 81–88.10.1016/j.molliq.2017.03.118
  • Ward, D. C. , Reich, E. , & Stryer, L. (1969). Fluorescence studies of nucleotides and polynucleotides: I. Formycin, 2-aminopurine riboside, 2,6-diaminopurine riboside, and their derivatives. Journal of Biological Chemistry , 244 , 1228–1237. Retrieved from http://www.jbc.org/content/244/5/1228.abstract

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.