425
Views
11
CrossRef citations to date
0
Altmetric
Research Article

Molecular dynamics simulations of lysozyme–lipid systems: probing the early steps of protein aggregation

&
Pages 2249-2260 | Received 07 Apr 2017, Accepted 27 Jun 2017, Published online: 10 Jul 2017

References

  • Adamcik, J., & Mezzenga, R. (2012). Protein fibrils from a polymer physics perspective. Macromolecules, 45, 1137–1150.10.1021/ma202157h
  • Aisenbrey, C., Borowik, T., Bystrom, R., Bokvist, M., Lindstrom, F., Misiak, H., … Grobner, G. (2008). How is protein aggregation in amyloidogenic diseases modulated by biological membranes? European Biophysics Journal, 37, 247–255.10.1007/s00249-007-0237-0
  • Ajmal, M., Chaturvedi, S., Zaidi, N., Alam, P., Zaman, M., Siddiqi, M. K., … Khan, R. (2017). Biophysical insights into the interaction of hen egg white lysozyme with therapeutic dye clofazimine: Modulation of activity and SDS induced aggregation of model protein. Journal of Biomolecular Structure and Dynamics, 35, 2197–2210.10.1080/07391102.2016.1211552
  • Ajmal, M., Nusrat, S., Alam, P., Zaidi, N., Badr, G., Mahmoud, M. G., … Khan, R. (2016). Differential mode of interaction of Thioflavin T with native β structural motif in human α 1-acid glycoprotein and cross beta sheet of its amyloid: Biophysical and molecular docking approach. Journal of Molecular Structure, 1117, 208–217.10.1016/j.molstruc.2016.03.081
  • Alam, P., Beg, A., Siddiqi, M., Chaturvedi, S., Rajpoot, R. K., Ajmal, M. R., … Khan, R. (2017). Ascorbic acid inhibits human insulin aggregation and protects against amyloid induced cytotoxicity. Archives of Biochemistry and Biophysics, 621, 54–62.10.1016/j.abb.2017.04.005
  • Alam, P., Chaturvedi, S., Siddiqi, M., Rajpoot, R., Ajmal, M., Zaman, M., … Khan, R. (2016). Vitamin k3 inhibits protein aggregation: Implication in the treatment of amyloid diseasesdiseases. Scientific Reports, 6, 26759–26769.10.1038/srep26759
  • Bartoli, L., Capriotti, E., Fariselli, P., Martelli, P., & Casadio, R. (2008). The pros and cons of predicting protein contact maps. Methods in Molecular Biology, 413, 199–217.
  • Beck, D., & Daggett, V. (2004). Methods for molecular dynamics simulations of protein folding/unfolding in solution. Methods, 34, 112–120.10.1016/j.ymeth.2004.03.008
  • Bernardi, R., Cann, I., & Schulten, K. (2014). Molecular dynamics study of enhanced Man5B enzymatic activity. Biotechnology for Biofuels, 7, 83–90.10.1186/1754-6834-7-83
  • Blake, C., Pulford, W., & Artymiuk, P. (1983). X-ray studies of water in crystals of lysozyme. Journal of Molecular Biology, 167, 693–723.10.1016/S0022-2836(83)80105-3
  • Buell, A. K., Dobson, C., & Knowles, T. (2014). The physical chemistry of the amyloid phenomenon: Thermodynamics and kinetics of filamentous protein aggregation. Essays in Biochemistry, 56, 11–39.10.1042/bse0560011
  • Cao, P., Abedini, A., Wang, H., Tu, L., Zhang, X., Schmidt, A., & Raleigh, D. (2013). Islet amyloid polypeptide toxicity and membrane interactions. Proceedings of the National Academy of Sciences, 110, 19279–19284.10.1073/pnas.1305517110
  • Cao, A., Hu, D., & Lai, L. (2004). Formation of amyloid fibrils from fully reduced hen egg white lysozyme. Protein Science, 13, 319–324.10.1110/ps.03183404
  • Chaturvedi, S., Khan, J., Siddiqi, M., Alam, P., & Khan, R. (2016). Comparative insight into surfactants mediated amyloidogenesis of lysozyme. International Journal of Biological Macromolecules, 83, 315–325.10.1016/j.ijbiomac.2015.11.053
  • Chiti, F., & Dobson, C. (2006). Protein misfolding, functional amyloid and human diseases. Annual Review of Biochemistry, 75, 333–366.10.1146/annurev.biochem.75.101304.123901
  • Chong, X., Lu, X., Wang, Y., Chang, A., Xu, L., Wang, N., … He, J. (2016). Distinct structural changes in wild-type and amyloidogenic chicken cystatin caused by disruption of C95–C115 disulfide bond. Journal of Biomolecular Structure and Dynamics, 34, 2679–2687.
  • Darden, T., York, D., & Pedersen, L. (1993). Particle mesh Ewald: An N·log(N) method for Ewald sums in large systems. Journal of Chemical Physics, 98, 10089–10092.10.1063/1.464397
  • Dong, A., Randolph, T., & Carpenter, J. (2000). Entrapping intermediates of thermal aggregation in α-helical properties with low concentration of guanidine hydrochloride. Journal of Biological Chemistry, 275, 27689–27693.
  • Frare, E., Mossuto, M., Polverino de Laureto, P., Dumoulin, M., Dobson, C., & Fontana, A. (2006). Identification of the core structure of lysozyme amyloid fibrils by proteolysis. Journal of Molecular Biology, 361, 551–561.10.1016/j.jmb.2006.06.055
  • Gorbenko, G., & Kinnunen, P. (2006). The role of lipid-protein interactions in amyloid-type protein fibril formation. Chemistry and Physics of Lipids, 141, 72–82.10.1016/j.chemphyslip.2006.02.006
  • Gorbenko, G., & Trusova, V. (2012). Protein aggregation in a membrane environment. Advances in Protein Chemistry and Structural Biology, 84, 114–152.
  • Hospital, A., Gorii, J., Orozco, M., & Gelpi, J. (2015). Molecular dynamics simulations: Advances and applications. Advances and Applications in Bioinformatics and Chemistry, 8, 37–47.
  • Humphrey, W., Dalke, A., & Schulten, K. (1996). VMD: Visual molecular dynamics. Journal of Molecular Graphics, 14, 33–38.10.1016/0263-7855(96)00018-5
  • Ibrahim, H., Thomas, U., & Pellegrini, A. (2001). A helix-loop-helix peptide at the upper lip of the active site cleft of lysozyme confers potent antimicrobial activity with membrane permeabilization action. Journal of Biological Chemistry, 276, 43767–43774.10.1074/jbc.M106317200
  • Jo, S., Lim, J., Klauda, J., & Im, W. (2009). CHARMM-GUI membrane builder for mixed bilayers and its application to yeast membranes. Biophysical Journal, 97, 50–58.10.1016/j.bpj.2009.04.013
  • Kabsch, W., & Sander, C. (1983). Dictionary of protein secondary structure: Pattern recognition of hydrogen-bonded and geometrical features. Biopolymers, 22, 2577–2637.10.1002/(ISSN)1097-0282
  • Kastorna, A., Trusova, V., Gorbenko, G., & Kinnunen, P. (2012). Membrane effects of lysozyme amyloid fibrils. Chemistry and Physics of Lipids, 165, 331–337.10.1016/j.chemphyslip.2012.02.002
  • Krebs, M., Wilkins, D., Chung, E., Pitkeathly, M., Chamberlain, A., Zurdo, J., … Dobson, C. (2000). Formation and seeding of amyloid fibrils from wild-type hen lysozyme and a peptide fragment from the β-domain. Journal of Molecular Biology, 300, 541–549.10.1006/jmbi.2000.3862
  • Kubiak-Ossowska, K., & Mulheran, P. (2011). Multiprotein interactions during surface adsorption: A molecular dynamics study of lysozyme aggregation at a charged solid surface. Journal of Physical Chemistry B, 115, 8891–8900.10.1021/jp1121239
  • Kumar, A., Srivastava, S., Tripathi, S., Singh, S., Srikrishna, S., & Sharma, A. (2016). Molecular insights into amyloid oligomer destabilizing mechanism of flavonoid derivative 2-(4’ benzyloxyphenyl)-3-hydroxy-chromen-4-one through docking and molecular dynamics simulations. Journal of Biomolecular Structure and Dynamics, 34, 1252–1263.10.1080/07391102.2015.1074943
  • Avila, C., Drechsel, N., Alcantara, R., & Villa-Freixa, J. (2011). Multiscale molecular dynamics of protein aggregation. Current Protein & Peptide Science, 12, 221–234.10.2174/138920311795860205
  • Lee, S. J. C., Nam, E., Lee, H. J., Savelieff, M. G., & Lim, M. H. (2017). Towards an understanding of amyloid-β oligomers: Characterization, toxicity mechanisms, and inhibitors. Chemical Society Reviews, 46, 310–323.10.1039/C6CS00731G
  • Lomize, M., Pogozheva, I., Joo, H., Mosberg, H., & Lomize, A. (2012). OPM database and PPM web server: Resources for positioning of proteins in membranes. Nucleic Acids Research, 40, D370–D376.10.1093/nar/gkr703
  • Mezentsev, Y., Medvedev, A., Kechko, O., Makarov, A., Ivanov, A., Mantsyzov, A. B., & Kozin, S. A. (2016). Zinc-induced heterodimer formation between metal-binding domains of intact and naturally modified amyloid-beta species: Implication to amyloid seeding in Alzheimer’s disease? Journal of Biomolecular Structure and Dynamics, 34, 2317–2326.10.1080/07391102.2015.1113890
  • Miao, Y., Feixas, F., Eun, C., & McCammon, J. A. (2015). Accelerated molecular dynamics simulations of protein folding. Journal of Computational Chemistry, 36, 1536–1549.10.1002/jcc.v36.20
  • Mossuto, M., Dhulesia, A., Devlin, G., Frare, E., Kumita, J., de Laureto, P., … Salvatella, X. (2010). The non-core regions of human lysozyme amyloid fibrils influence cytotoxicity. Journal of Molecular Biology, 402, 783–796.10.1016/j.jmb.2010.07.005
  • Onuchic, J., & Wolynes, P. (2004). Theory of protein folding. Current Opinion in Structural Biology, 14, 70–75.10.1016/j.sbi.2004.01.009
  • Paci, E., Gsponer, J., Salvatella, X., & Vendruscolo, M. (2004). Molecular dynamics studies of the process of amyloid aggregation of peptide fragments of transthyretin. Journal of Molecular Biology, 340, 555–569.10.1016/j.jmb.2004.05.009
  • Park, S., Yoon, J., Jang, S., Lee, K., & Shin, S. (2016). The role of acidic domain of α-synuclein in amyloid fibril formation: A molecular dynamics study. Journal of Biomolecular Structure and Dynamics, 34, 376–383.10.1080/07391102.2015.1033016
  • Plotkin, S., & Onuchic, J. (2000). Investigation of routes and funnels in protein folding by free energy functional methods. Proceedings of the National Academy of Sciences, 97, 6509–6514.10.1073/pnas.97.12.6509
  • Roe, S., & Teeter, M. (1993). Patterns for prediction of hydration around polar residues in Proteins. Journal of Molecular Biology, 229, 419–427.10.1006/jmbi.1993.1043
  • Shuaib, S., & Goyal, B. (2017). Scrutiny of the mechanism of small molecule inhibitor preventing conformational transition of amyloid-β42 monomer: Insights from molecular dynamics simulations. Journal of Biomolecular Structure and Dynamics, 1–16. doi:10.1080/07391102.2017.1291363
  • Straub, J., & Thirumalai, D. (2011). Towards a molecular theory of early and late events in monomer to amyloid fibril formation. Annual Review of Physical Chemistry, 62, 437–463.10.1146/annurev-physchem-032210-103526
  • Tokunaga, Y., Sakakibara, Y., Kamada, Y., Watanabe, K., & Sugimoto, Y. (2013). Analysis of core region from egg white lysozyme forming amyloid fibrils. International Journal of Biological Sciences, 9, 219–227.10.7150/ijbs.5380
  • Trusova, V. (2015). Protein fibrillar nanopolymers: Molecular-level insights into their structural, physical and mechanical properties. Biophysical Reviews and Letters, 10, 135–156.10.1142/S1793048015300029
  • Trusova, V. (2016). Theoretical analysis of amyloidogenic potential of lysozyme, cytochrome c and apolipoprotein A-I. Biophysical Bulletin, 36, 5–10.
  • Urbanc, B., Cruz, L., Ding, F., Sammond, D., Khare, S., Buldyrev, S., … Dokholyan, N. (2004). Molecular dynamics simulation of amyloid β dimer formation. Biophysical Journal, 87, 2310–2321.10.1529/biophysj.104.040980
  • Vehlow, C., Stehr, H., Winkelmann, M., Duarte, J., Petzold, L., Dinse, J., & Lappe, M. (2011). CMView: Interactive contact map visualization and analysis. Bioinformatics, 27, 1573–1574.10.1093/bioinformatics/btr163
  • Vendruscolo, M., & Domany, E. (1998). Efficient dynamics in the space of contact maps. Folding & Design, 3, 329–336.10.1016/S1359-0278(98)00045-5
  • Volpatti, L., & Knowles, T. (2014). Polymer physics inspired approaches for the study of the mechanical properties of amyloid fibrils. Journal of Polymer Science A, 52, 281–292.
  • Wei, G., Mousseau, N., & Derreumaux, P. (2007). Computational simulations of the early steps of protein aggregation. Prion, 1, 3–8.10.4161/pri.1.1.3969

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.