168
Views
17
CrossRef citations to date
0
Altmetric
Research Article

In silico and empirical approaches toward understanding the structural adaptation of the alkaline-stable lipase KV1 from Acinetobacter haemolyticus

, , , ORCID Icon & ORCID Icon
Pages 3077-3093 | Received 22 Jul 2017, Accepted 04 Sep 2017, Published online: 28 Sep 2017

References

  • Abraham, M. J., Murtola, T., Schulz, R., Páll, S., Smith, J. C., Hess, B., & Lindahl, E. (2015). GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX, 1, 19–25.10.1016/j.softx.2015.06.001
  • Adcock, S. A., & McCammon, J. A. (2006). Molecular dynamics: Survey of methods for simulating the activity of proteins. Chemical Reviews, 106, 1589–1615.10.1021/cr040426 m
  • Altschul, S. F., Madden, T. L., Schäffer, A. A., Zhang, J., Zhang, Z., Miller, W., & Lipman, D. J. (1997). Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Research, 25, 3389–3402.10.1093/nar/25.17.3389
  • Aono, R. (1995). Assignment of facultatively alkaliphilic Bacillus sp. strain C-125 to Bacillus lentus group 3. International Journal of Systematic and Evolutionary Microbiology, 45, 582–585.
  • Arpigny, J. L., & Jaeger, K. E. (1999). Bacterial lipolytic enzymes: Classification and properties. Biochemical Journal, 343, 177–183.10.1042/bj3430177
  • Batumalaie, K., Khalili, E., Mahat, N., Huyop, F., & Wahab, R. A. (in press). A statistical approach for optimizing the protocol for overexpressing lipase KV1 in Escherichia coli: Purification and characterization. Biotechnology and Biotechnological Equipment.
  • Berendsen, H. J., van der Spoel, D., & van Drunen, R. (1995). GROMACS: A message-passing parallel molecular dynamics implementation. Computer Physics Communications, 91, 43–56.10.1016/0010-4655(95)00042-E
  • Biasini, M., Bienert, S., Waterhouse, A., Arnold, K., Studer, G., Schmidt, T., … Schwede, T. (2014). SWISS-MODEL: Modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Research, 42, W252–W258.10.1093/nar/gku340
  • Bienert, S., Waterhouse, A., de Beer, T. A., Tauriello, G., Studer, G., Bordoli, L., & Schwede, T. (2016). The SWISS-MODEL repository – New features and functionality. Nucleic Acids Research, 45, D313–D319.
  • Bora, L., & Bora, M. (2012). Optimization of extracellular thermophilic highly alkaline lipase from thermophilic Bacillus sp isolated from Hotspring of Arunachal Pradesh, India. Brazilian Journal of Microbiology, 43, 30–42.10.1590/S1517-83822012000100004
  • Carr, P. D., & Ollis, D. L. (2009). α/βHydrolase fold: An update. Protein and Peptide Letters, 16, 1137–1148.
  • Chaitanya, M., Babajan, B., Anuradha, C. M., Naveen, M., Rajasekhar, C., Madhusudana, P., & Kumar, C. S. (2010). Exploring the molecular basis for selective binding of Mycobacterium tuberculosis Asp kinase toward its natural substrates and feedback inhibitors: A docking and molecular dynamics study. Journal of Molecular Modeling, 16, 1357–1367.10.1007/s00894-010-0653-4
  • Chitale, M., Hawkins, T., & Kihara, D. (2009). Chapter 3: Automated prediction of protein function from sequence. Prediction of protein structure, functions, and interactions (pp. 63–86). Wiley. doi:10.1002/9780470741894.ch3
  • Combet, C., Blanchet, C., Geourjon, C., & Deleage, G. (2000). NPS@: Network protein sequence analysis. Trends in Biochemical Sciences, 25, 147–150.10.1016/S0968-0004(99)01540-6
  • De Simone, G., Menchise, V., Manco, G., Mandrich, L., Sorrentino, N., Lang, D., … Pedone, C. (2001). The crystal structure of a hyper-thermophilic carboxylesterase from the archaeon Archaeoglobus fulgidus. Journal of Molecular Biology, 314, 507–518.10.1006/jmbi.2001.5152
  • Desiraju, G. R. (2002). Hydrogen bridges in crystal engineering: Interactions without borders. Accounts of Chemical Research, 35, 565–573.10.1021/ar010054t
  • Edbeib, M. F., Wahab, R. A., Kaya, Y., & Huyop, F. (2017). In silico characterization of a novel dehalogenase (DehHX) from the halophile Pseudomonas halophila HX isolated from Tuz Gölü Lake, Turkey: Insights into a hypersaline-adapted dehalogenase. Annals of Microbiology, 67, 371–382.10.1007/s13213-017-1266-2
  • Ewald, P. P. (1921). The calculation of optical and electrostatic grid potential. Annals of Physics, 64, 253–287.10.1002/(ISSN)1521-3889
  • Fiser, A. (2017). Comparative protein structure modelling. In From protein structure to function with bioinformatics (pp. 91–134). Netherlands: Springer.
  • Ganasen, M., Yaacob, N., Rahman, R. N. Z. R. A., Leow, A. T. C., Basri, M., Salleh, A. B., & Ali, M. S. M. (2016). Cold-adapted organic solvent tolerant alkalophilic family I.3 lipase from an Antarctic Pseudomonas. International Journal of Biological Macromolecules, 92, 1266–1276.10.1016/j.ijbiomac.2016.06.095
  • Gasteiger, E., Hoogland, C., Gattiker, A., Duvaud, S. E., Wilkins, M. R., Appel, R. D., & Bairoch, A. (2005). Protein identification and analysis tools on the ExPASy server (pp. 571–607). New York, NY: Humana Press.
  • Ghaderi, S., Bozorgmehr, M. R., & Morsali, A. (2017). Structure study and predict the function of the diphtheria toxin in different pH levels (acidic-basic-natural) using molecular dynamics simulations. Entomology and Applied Science Letters, 3, 49–56.
  • Ghaderi, S., Tarahomjoo, S., & Bozorgmehr, M. R. (2016). Utilizing molecular dynamics simulations for identification of conformational B-cell epitopes in diphtheria toxin at varying pHs. Journal of Chemical, Biological and Physical Sciences (JCBPS), 7, 85.
  • Hamid, A. A. A., Wong, E. L., Joyce-Tan, K. H., Shamsir, M. S., Hamid, T. H. T. A., & Huyop, F. (2013). Molecular modelling and functional studies of the non-stereospecific α-haloalkanoic acid dehalogenase (dehe) from Rhizobium sp. rc1 and its association with 3-chloropropionic acid (β-chlorinated aliphatic acid). Biotechnology and Biotechnological Equipment, 27, 3725–3736.10.5504/BBEQ.2012.0142
  • Hess, B., Bekker, H., Berendsen, H. J., & Fraaije, J. G. (1997). LINCS: A linear constraint solver for molecular simulations. Journal of Computational Chemistry, 18, 1463–1472.10.1002/(ISSN)1096-987X
  • Holmquist, M. (2000). Alpha beta-hydrolase fold enzymes structures, functions and mechanisms. Current Protein and Peptide Science, 1, 209–235.10.2174/1389203003381405
  • Houston, D. R., & Walkinshaw, M. D. (2013). Consensus docking: Improving the reliability of docking in a virtual screening context. Journal of Chemical Information and Modeling, 53, 384–390.10.1021/ci300399w
  • Illanes, A. (Ed.). (2008). Enzyme biocatalysis: Principles and applications. Springer Science & Business Media.
  • Iyer, P. V., & Ananthanarayan, L. (2008). Enzyme stability and stabilization – Aqueous and non-aqueous environment. Process Biochemistry, 43, 1019–1032.10.1016/j.procbio.2008.06.004
  • Kelley, L. A., Mezulis, S., Yates, C. M., Wass, M. N., & Sternberg, M. J. (2015). The Phyre2 web portal for protein modeling, prediction and analysis. Nature Protocols, 10, 845–858.10.1038/nprot.2015.053
  • Kingsley, L. J., & Lill, M. A. (2015). Substrate tunnels in enzymes: Structure–function relationships and computational methodology. Proteins: Structure, Function, and Bioinformatics, 83, 599–611.10.1002/prot.v83.4
  • Kostik, V., Memeti, S., & Bauer, B. (2013). Fatty acid composition of edible oils and fats. Journal of Hygienic Engineering and Design, 4, 112–116.
  • Laskowski, R. A., MacArthur, M. W., Moss, D. S., & Thornton, J. M. (1993). PROCHECK: A program to check the stereochemical quality of protein structures. Journal of Applied Crystallography, 26, 283–291.10.1107/S0021889892009944
  • Lerner, M. G., & Carlson, H. A. (2006). APBS plugin for PyMOL. Ann Arbor: University of Michigan.
  • Liang, C., Xue, Y., Fioroni, M., Rodríguez-Ropero, F., Zhou, C., Schwaneberg, U., & Ma, Y. (2011). Cloning and characterization of a thermostable and halo-tolerant endoglucanase from Thermoanaerobacter tengcongensis MB4. Applied Microbiology and Biotechnology, 89, 315–326.10.1007/s00253-010-2842-6
  • Pandey, A., Benjamin, S., Soccol, C. R., Nigam, P., Krieger, N., & Soccol, V. T. (1999). The realm of microbial lipases in biotechnology. Biotechnology and Applied Biochemistry, 29, 119–131.
  • Pereira, M. R., Maester, T. C., Mercaldi, G. F., de Macedo Lemos, E. G., Hyvönen, M., & Balan, A. (2017). From a metagenomic source to a high-resolution structure of a novel alkaline esterase. Applied Microbiology and Biotechnology, 101, 4935–4949.10.1007/s00253-017-8226-4
  • Ramnath, L., Sithole, B., & Govinden, R. (2016). Classification of lipolytic enzymes and their biotechnological applications in the pulping industry. Canadian Journal of Microbiology, 63, 179–192.
  • Rauwerdink, A., & Kazlauskas, R. J. (2015). How the same core catalytic machinery catalyzes 17 different reactions: The serine-histidine-aspartate catalytic triad of α/β-hydrolase fold enzymes. ACS Catalysis, 5, 6153–6176.10.1021/acscatal.5b01539
  • Robert, X., & Gouet, P. (2014). Deciphering key features in protein structures with the new ENDscript server. Nucleic Acids Research, 42, W320–W324.10.1093/nar/gku316
  • Rosenau, F., Tommassen, J., & Jaeger, K. E. (2004). Lipase-specific foldases. ChemBioChem, 5, 152–161.10.1002/cbic.v5:2
  • Scheer, M., Grote, A., Chang, A., Schomburg, I., Munaretto, C., Rother, M., … Schomburg, D. (2010). BRENDA, the enzyme information system in 2011. Nucleic Acids Research, 39(suppl_1), D670–D676.
  • Seeliger, D., & de Groot, B. L. (2010). Ligand docking and binding site analysis with PyMOL and Autodock/Vina. Journal of Computer-Aided Molecular Design, 24, 417–422.10.1007/s10822-010-9352-6
  • Sehnal, D., Vařeková, R. S., Berka, K., Pravda, L., Navrátilová, V., Banáš, P., … Koča, J. (2013). MOLE 2.0: Advanced approach for analysis of biomacromolecular channels. Journal of Cheminformatics, 5, 39.10.1186/1758-2946-5-39
  • Sharma, R., Chisti, Y., & Banerjee, U. C. (2001). Production, purification, characterization, and applications of lipases. Biotechnology Advances, 19, 627–662.10.1016/S0734-9750(01)00086-6
  • Stauch, B., Fisher, S. J., & Cianci, M. (2015). Open and closed states of Candida antarctica lipase B: Protonation and the mechanism of interfacial activation. Journal of Lipid Research, 56, 2348–2358.10.1194/jlr.M063388
  • Suplatov, D. A., Besenmatter, W., Švedas, V. K., & Svendsen, A. (2012). Bioinformatic analysis of alpha/beta-hydrolase fold enzymes reveals subfamily-specific positions responsible for discrimination of amidase and lipase activities. Protein Engineering, Design and Selection, 25, 689–697.10.1093/protein/gzs068
  • Tsujii, K. (2002). Donnan equilibria in microbial cell walls: A pH-homeostatic mechanism in alkaliphiles. Colloids and Surfaces B: Biointerfaces, 24, 247–251.10.1016/S0927-7765(01)00244-2
  • Wahab, R. A., Basri, M., Rahman, R. N. Z. R. A., Salleh, A. B., Rahman, M. B. A., Chaibakhsh, N., & Leow, T. C. (2014). Enzymatic production of a solvent-free menthyl butyrate via response surface methodology catalyzed by a novel thermostable lipase from Geobacillus zalihae. Biotechnology & Biotechnological Equipment, 28, 1065–1072.10.1080/13102818.2014.978220
  • Xiang, Z. (2006). Advances in homology protein structure modeling. Current Protein and Peptide Science, 7, 217–227.10.2174/138920306777452312
  • Zheng, X., Chu, X., Zhang, W., Wu, N., & Fan, Y. (2011). A novel cold-adapted lipase from Acinetobacter sp. XMZ-26: Gene cloning and characterisation. Applied Microbiology and Biotechnology, 90, 971–980.10.1007/s00253-011-3154-1
  • Zheng, H., Hou, J., Zimmerman, M. D., Wlodawer, A., & Minor, W. (2014). The future of crystallography in drug discovery. Expert Opinion on Drug Discovery, 9, 125–137.10.1517/17460441.2014.872623

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.