271
Views
18
CrossRef citations to date
0
Altmetric
Research Article

Biophysical and computational comparison on the binding affinity of three important nutrients to β-lactoglobulin: folic acid, ascorbic acid and vitamin K3

, , &
Pages 3651-3665 | Received 18 Aug 2017, Accepted 12 Oct 2017, Published online: 06 Nov 2017

References

  • Abu, T., Ghithan, J., Darwish, S., & Abu-Hadid, M. M. (2012). Multi-spectroscopic investigation of the interactions between cholesterol and human serum albumin. Journal of Applied Biological Sciences, 6(3), 45–55.
  • Albani, J. R. (2007). Principles and applications of fluorescence spectroscopy. Oxford, UK: Blackwell Publishing Company.
  • Bourassa, P., Dubeau, S., Maharvi, G. M., Fauq, A. H., Thomas, T., & Tajmir-Riahi, H. (2011). Binding of antitumor tamoxifen and its metabolites 4-hydroxytamoxifen and endoxifen to human serum albumin. Biochimie, 93(7), 1089–1101. doi:10.1016/j.biochi.2011.03.006
  • Bourassa, P., Hasni, I., & Tajmir-Riahi, H. (2011). Folic acid complexes with human and bovine serum albumins. Food Chemistry, 129(3), 1148–1155. doi:10.1016/j.foodchem.2011.05.094
  • Carrillo-Carrión, C., Lendl, B., Simonet, B. M., & Valcárcel, M. (2011). Calix [8] arene coated CdSe/ZnS quantum dots as C60-nanosensor. Analytical Chemistry, 83(21), 8093–8100. doi:10.1021/ac201134d
  • Chamani, J., Moosavi-Movahedi, A., Rajabi, O., Gharanfoli, M., Momen-Heravi, M., Hakimelahi, G., & Varasteh, A. (2006). Cooperative α-helix formation of β-lactoglobulin induced by sodium n-alkyl sulfates. Journal of Colloid and Interface Science, 293(1), 52–60. doi:10.1016/j.jcis.2005.06.015
  • Chavoshpour-Natanzi, Z., Sahihi, M., & Gharaghani, S. (2017). Structural stability of β-lactoglobulin in the presence of cetylpyridinum bromide: Spectroscopic and molecular docking studies. Journal of Biomolecular Structure and Dynamics, 1–8. doi:10.1080/07391102.2017.1297254
  • Divsalar, A., Saboury, A., & Moosavi-Movahedi, A. (2006). Conformational and structural analysis of bovine β lactoglobulin-A upon interaction with Cr+3. The Protein Journal, 25(2), 157–165. doi:10.1007/s10930-006-0007-3
  • Eftink, M. R., & Ghiron, C. A. (1981). Fluorescence quenching studies with proteins. Analytical Biochemistry, 114(2), 199–227. doi:10.1016/0003-2697(81)90474-7
  • Essemine, J., Hasni, I., Carpentier, R., Thomas, T., & Tajmir-Riahi, H. (2011). Binding of biogenic and synthetic polyamines to β-lactoglobulin. International Journal of Biological Macromolecules, 49(2), 201–209. doi:10.1016/j.ijbiomac.2011.04.016
  • Feroz, S. R., Mohamad, S. B., Bujang, N., Malek, S. N., & Tayyab, S. (2012). Multispectroscopic and molecular modeling approach to investigate the interaction of flavokawain B with human serum albumin. Journal of Agricultural and Food Chemistry, 60(23), 5899–5908. doi:10.1021/jf301139h
  • Fotouhi, L., Yousefinejad, S., Salehi, N., Saboury, A., Sheibani, N., & Moosavi-Movahedi, A. (2015). Application of merged spectroscopic data combined with chemometric analysis for resolution of hemoglobin intermediates during chemical unfolding. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 136, 1974–1981. doi:10.1016/j.saa.2014.10.120
  • Ghalandari, B., Divsalar, A., Saboury, A. A., Haertlé, T., Parivar, K., Bazl, R., & Amanlou, M. (2014). Spectroscopic and theoretical investigation of oxali–palladium interactions with β-lactoglobulin. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 118, 1038–1046. doi:10.1016/j.saa.2013.09.126
  • Gowthaman, U., Jayakanthan, M., & Sundar, D. (2008). Molecular docking studies of dithionitrobenzoic acid and its related compounds to protein disulfide isomerase: Computational screening of inhibitors to HIV-1 entry. BMC Bioinformatics, 9(12), 1. doi:10.1186/1471-2105-9-S12-S14
  • Hall, M. L., Jorgensen, W. L., & Whitehead, L. (2013). Automated ligand- and structure-based protocol for in silico prediction of human serum albumin binding. Journal of Chemical Information and Modeling, 53(4), 907–922. doi:10.1021/ci3006098
  • Hamed-Akbari Tousi, S., Reza Saberi, M., & Chamani, J. (2010). Comparing the interaction of cyclophosphamide monohydrate to human serum albumin as opposed to holo–transferrin by spectroscopic and molecular modeling methods: Evidence for allocating the binding site. Protein & Peptide Letters, 17(12), 1524–1535.10.2174/0929866511009011524
  • Hu, Y.-J., Liu, Y., Jiang, W., Zhao, R.-M., & Qu, S.-S. (2005). Fluorometric investigation of the interaction of bovine serum albumin with surfactants and 6-mercaptopurine. Journal of Photochemistry and Photobiology B: Biology, 80(3), 235–242. doi:10.1016/j.jphotobiol.2005.04.005
  • Hu, Y.-J., Liu, Y., & Xiao, X.-H. (2009). Investigation of the interaction between berberine and human serum albumin. Biomacromolecules, 10(3), 517–521. doi:10.1021/bm801120k
  • Huang, S., Zhu, F., Xiao, Q., Zhou, Q., Su, W., Qiu, H., & Huang, C. (2014). Combined spectroscopy and cyclic voltammetry investigates the interaction between [(η 6-p-cymene) Ru (benzaldehyde-N (4)-phenylthiosemicarbazone) Cl] Cl anticancer drug and human serum albumin. RSC Advances, 4(68), 36286–36300. doi:10.1039/C4RA06083K
  • Jameson, G. B., Adams, J. J., & Creamer, L. K. (2002). Flexibility, functionality and hydrophobicity of bovine β-lactoglobulin. International Dairy Journal, 12(4), 319–329. doi:10.1016/S0958-6946(02)00028-6
  • Kandagal, P., Ashoka, S., Seetharamappa, J., Shaikh, S., Jadegoud, Y., & Ijare, O. (2006). Study of the interaction of an anticancer drug with human and bovine serum albumin: Spectroscopic approach. Journal of Pharmaceutical and Biomedical Analysis, 41(2), 393–399. doi:10.1016/j.jpba.2005.11.037
  • Katrahalli, U., Jaldappagari, S., & Kalanur, S. S. (2010). Study of the interaction between fluoxetine hydrochloride and bovine serum albumin in the imitated physiological conditions by multi-spectroscopic methods. Journal of Luminescence, 130(2), 211–216. doi:10.1016/j.jlumin.2009.07.033
  • Khorsand Ahmadi, S., Mahmoodian Moghadam, M., Mokaberi, P., Reza Saberi, M., & Chamani, J. (2015). A comparison study of the interaction between β-lactoglobulin and retinol at two different conditions: Spectroscopic and molecular modeling approaches. Journal of Biomolecular Structure and Dynamics, 33(9), 1880–1898. doi:10.1080/07391102.2014.977351
  • Khosravi, I., & Sahihi, M. (2014). Computational studies on the interaction of arctiin and liquiritin with β-lactoglobulin. Journal of Macromolecular Science, Part B, 53(9), 1591–1600. doi:10.1080/00222348.2014.946844
  • Kontopidis, G., Holt, C., & Sawyer, L. (2004). Invited review: Β-lactoglobulin: Binding properties, structure, and function. Journal of Dairy Science, 87(4), 785–796. doi:10.3168/jds.S0022-0302(04)73222-1
  • Lakowicz, J. R. (2001). Radiative decay engineering: Biophysical and biomedical applications. Analytical Biochemistry, 298(1), 1–24. doi:10.1006/abio.2001.5377
  • Lakowicz, J. R. (2013). Principles of fluorescence spectroscopy. Springer Science & Business Media.
  • Li, D., Zhu, J., Jin, J., & Yao, X. (2007). Studies on the binding of nevadensin to human serum albumin by molecular spectroscopy and modeling. Journal of Molecular Structure, 846(1), 34–41. doi:10.1016/j.molstruc.2007.01.020
  • Liang, L., & Subirade, M. (2010). β-lactoglobulin/folic acid complexes: Formation, characterization, and biological implication. The Journal of Physical Chemistry B, 114(19), 6707–6712. doi:10.1021/jp101096r
  • Loch, J. I., Bonarek, P., Polit, A., Świątek, S., Czub, M., Ludwikowska, M., & Lewiński, K. (2015). Conformational variability of goat β-lactoglobulin: Crystallographic and thermodynamic studies. International Journal of Biological Macromolecules, 72, 1283–1291. doi:10.1016/j.ijbiomac.2014.10.031
  • Maity, S., Pal, S., Sardar, S., Sepay, N., Parvej, H., Chakraborty, J., & Halder, U. C. (2016). Multispectroscopic analysis and molecular modeling to investigate the binding of beta lactoglobulin with curcumin derivatives. RSC Advances, 6(113), 112175–112183. doi:10.1039/C6RA24275H
  • Marouzi, S., Rad, A. S., Beigoli, S., Baghaee, P. T., Darban, R. A., & Chamani, J. (2017). Study on effect of lomefloxacin on human holo-transferrin in the presence of essential and nonessential amino acids: Spectroscopic and molecular modeling approaches. International Journal of Biological Macromolecules, 97, 688–699. doi:10.1016/j.ijbiomac.2017.01.047
  • Mckenzie, H., & Sawyer, W. (1967). Effect of pH on beta-lactoglobulins. Nature, 214, 1101–1104.10.1038/2141101a0
  • Mohammadi, F., Sahihi, M., & Bordbar, A. K. (2015). Multispectroscopic and molecular modeling studies on the interaction of two curcuminoids with β-lactoglobulin. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 140, 274–282. doi:10.1016/j.saa.2014.12.032
  • Na, N., Delanghe, J. R., Taes, Y. E., Torck, M., Baeyens, W. R., & Ouyang, J. (2006). Serum vitamin C concentration is influenced by haptoglobin polymorphism and iron status in Chinese. Clinica Chimica Acta, 365(1), 319–324. doi:10.1016/j.cca.2005.09.015
  • Pérez, O. E., David-Birman, T., Kesselman, E., Levi-Tal, S., & Lesmes, U. (2014). Milk protein–vitamin interactions: Formation of beta-lactoglobulin/folic acid nano-complexes and their impact on in vitro gastro-duodenal proteolysis. Food Hydrocolloids, 38, 40–47. doi:10.1016/j.foodhyd.2013.11.010
  • Puyol, P., Perez, M., Mata, L., & Calvo, M. (1994). Study on interaction between β-lactoglobulin and other bovine whey proteins with ascorbic acid. Milchwissenschaft, 49(1), 25–27.
  • Qin, B. Y., Bewley, M. C., Creamer, L. K., Baker, H. M., Baker, E. N., & Jameson, G. B. (1998). Structural basis of the tanford transition of bovine β-lactoglobulin. Biochemistry, 37(40), 14014–14023. doi:10.1021/bi981016t
  • Rashidipour, S., Naeeminejad, S., & Chamani, J. (2016). Study of the interaction between DNP and DIDS with human hemoglobin as binary and ternary systems: Spectroscopic and molecular modeling investigation. Journal of Biomolecular Structure and Dynamics, 34(1), 57–77. doi:10.1080/07391102.2015.1009946
  • Rasoulzadeh, F., Jabary, H. N., Naseri, A., & Rashidi, M.-R. (2009). Fluorescence quenching study of quercetin interaction with bovine milk xanthine oxidase. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 72(1), 190–193. doi:10.1016/j.saa.2008.09.021
  • Rohit, A., Sathisha, K., & Aparna, H. (2012). A variant peptide of buffalo colostrum β-lactoglobulin inhibits angiotensin I-converting enzyme activity. European Journal of Medicinal Chemistry, 53, 211–219. doi:10.1016/j.ejmech.2012.03.057
  • Sahihi, M., Bordbar, A., & Ghayeb, Y. (2010). Thermodynamic denaturation of β-lactoglobulin in the presence of cetylpyridinium chloride. The Journal of Chemical Thermodynamics, 42(12), 1423–1428. doi:10.1016/j.jct.2010.06.010
  • Sahihi, M., Bordbar, A., & Ghayeb, Y. (2011). Thermodynamic stability and retinol binding property of β-lactoglobulin in the presence of cationic surfactants. The Journal of Chemical Thermodynamics, 43(8), 1185–1191. doi:10.1016/j.jct.2011.03.004
  • Sahihi, M., & Ghayeb, Y. (2014a). Binding of biguanides to β-lactoglobulin: Molecular-docking and molecular dynamics simulation studies. Chemical Papers, 68(11), 1601–1607. doi:10.2478/s11696-014-0598-7
  • Sahihi, M., & Ghayeb, Y. (2014b). An investigation of molecular dynamics simulation and molecular docking: Interaction of citrus flavonoids and bovine β-lactoglobulin in focus. Computers in Biology and Medicine, 51, 44–50. doi:10.1016/j.compbiomed.2014.04.022
  • Sahihi, M., Bordbar, A., Ghayeb, Y., & Fani, N. (2012). Structure–function relationship of β-lactoglobulin in the presence of sodium dodecylbenzenesulfonate. The Journal of Chemical Thermodynamics, 52, 16–23. doi:10.1016/j.jct.2011.12.017
  • Sahihi, M., Heidari-Koholi, Z., & Bordbar, A.-K. (2012). The interaction of polyphenol flavonoids with β-lactoglobulin: Molecular docking and molecular dynamics simulation studies. Journal of Macromolecular Science, Part B, 51(12), 2311–2323. doi:10.1080/00222348.2012.672854
  • Sahoo, H. (2011). Förster resonance energy transfer – A spectroscopic nanoruler: Principle and applications. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 12(1), 20–30. doi:10.1016/j.jphotochemrev.2011.05.001
  • Samari, F., Hemmateenejad, B., Shamsipur, M., Rashidi, M., & Samouei, H. (2012). Affinity of two novel five-coordinated anticancer Pt (II) complexes to human and bovine serum albumins: A spectroscopic approach. Inorganic Chemistry, 51(6), 3454–3464. doi:10.1021/ic202141g
  • Scott, J., Rébeillé, F., & Fletcher, J. (2000). Folic acid and folates: The feasibility for nutritional enhancement in plant foods. Journal of the Science of Food and Agriculture, 80(7), 795–824. doi:10.1002/(SICI)1097-0010(20000515)80:7<795::AID-JSFA599>3.0.CO;2-K
  • Shafaei, Z., Ghalandari, B., Vaseghi, A., Divsalar, A., Haertlé, T., Saboury, A. A., & Sawyer, L. (2017). β-Lactoglobulin: An efficient nanocarrier for advanced delivery systems. Nanomedicine: Nanotechnology Biology and Medicine, 13(5), 1685–1692. doi:10.1016/j.nano.2017.03.007
  • Sneharani, A. H., Karakkat, J. V., Singh, S. A., & Rao, A. A. (2010). Interaction of curcumin with β-lactoglobulin stability, spectroscopic analysis, and molecular modeling of the complex. Journal of Agricultural and Food Chemistry, 58(20), 11130–11139. doi:10.1021/jf102826q
  • Shahraki, S., Saeidifar, M., Shiri, F., & Heidari, A. (2016). Assessment of the interaction procedure between Pt (IV) prodrug [Pt (5, 5′-dmbpy) Cl4 and human serum albumin: Combination of spectroscopic and molecular modeling technique. Journal of Biomolecular Structure and Dynamics, 1–9. doi:10.1080/07391102.2016.1243074
  • Shahraki, S., Shiri, F., Majd, M. H., & Razmara, Z. (2017). Comparative study on the anticancer activities and binding properties of a hetero metal binuclear complex [Co (dipic) 2 Ni (OH 2) 5]· 2H 2 O (dipic=dipicolinate) with two carrier proteins. Journal of Pharmaceutical and Biomedical Analysis, 145, 273–282. doi:10.1016/j.jpba.2017.06.067
  • Stryer, L. (1959). Intramolecular resonance transfer of energy in proteins. Biochimica et Biophysica Acta, 35, 242–244. doi:10.1016/0006-3002(59)90355-5
  • Tabor, D. P. (2016). Extracting structural information from the OH and CH stretch spectral regions with a local mode approach. Madison, WIThe University of Wisconsin-Madison.
  • Taheri-Kafrani, A., Asgari-Mobarakeh, E., Bordbar, A.-K., & Haertlé, T. (2010). Structure–function relationship of β-lactoglobulin in the presence of dodecyltrimethyl ammonium bromide. Colloids and Surfaces B: Biointerfaces, 75(1), 268–274. doi:10.1016/j.colsurfb.2009.08.045
  • Tan, C., Atas, E., Müller, J. G., Pinto, M. R., Kleiman, V. D., & Schanze, K. S. (2004). Amplified quenching of a conjugated polyelectrolyte by cyanine dyes. Journal of the American Chemical Society, 126(42), 13685–13694. doi:10.1021/ja046856b
  • Tang, B., Huang, Y., Ma, X., Liao, X., Wang, Q., Xiong, X., & Li, H. (2016). Multispectroscopic and docking studies on the binding of chlorogenic acid isomers to human serum albumin: Effects of esteryl position on affinity. Food Chemistry, 212, 434–442. doi:10.1016/j.foodchem.2016.06.007
  • Thipperudrappa, J., Biradar, D., & Hanagodimath, S. (2007). Simultaneous presence of static and dynamic component in the fluorescence quenching of Bis-MSB by CCl 4 and aniline. Journal of Luminescence, 124(1), 45–50. doi:10.1016/j.jlumin.2006.02.001
  • Tian, J., Liu, J., Tian, X., Hu, Z., & Chen, X. (2004). Study of the interaction of kaempferol with bovine serum albumin. Journal of Molecular Structure, 691(1), 197–202. doi:10.1016/j.molstruc.2003.12.019
  • Tian, J., Liu, J., Hu, Z., & Chen, X. (2005). Interaction of wogonin with bovine serum albumin. Bioorganic & Medicinal Chemistry, 13(12), 4124–4129. doi:10.1016/j.bmc.2005.02.065
  • Tomankova, K., Polakova, K., Pizova, K., Binder, S., Havrdova, M., Kolarova, M., & Horakova, J. (2015). In vitro cytotoxicity analysis of doxorubicin-loaded/superparamagnetic iron oxide colloidal nanoassemblies on MCF7 and NIH3T3 cell lines. International Journal of Nanomedicine, 10, 949. doi:10.2147/IJN.S72590
  • Trynda-Lemiesz, L. (2004). Paclitaxel–HSA interaction. Binding sites on HSA molecule. Bioorganic & Medicinal Chemistry, 12(12), 3269–3275. doi:10.1016/j.bmc.2004.03.073
  • Wang, F., Huang, W., & Dai, Z. (2008). Spectroscopic investigation of the interaction between riboflavin and bovine serum albumin. Journal of Molecular Structure, 875(1), 509–514. doi:10.1016/j.molstruc.2007.05.034
  • Wang, H., Jiang, X., Zhou, L., Cheng, Z., Yin, W., Duan, M., & Jiang, X. (2013). Interaction of NAEn-sn gemini surfactants with bovine serum albumin: A structure–activity probe. Journal of Luminescence, 134, 138–147. doi:10.1016/j.jlumin.2012.08.058
  • Wang, Q., Sun, Q., Ma, X., Rao, Z., & Li, H. (2015). Probing the binding interaction of human serum albumin with three bioactive constituents of Eriobotrta japonica leaves: Spectroscopic and molecular modeling approaches. Journal of Photochemistry and Photobiology B: Biology, 148, 268–276. doi:10.1016/j.jphotobiol.2015.04.030
  • Yettella, R. R., & Min, D. B. (2010). Effects of trolox and ascorbic acid on the riboflavin photosensitised oxidation of aromatic amino acids. Food Chemistry, 118(1), 35–41. doi:10.1016/j.foodchem.2009.04.022
  • Yousefi, R., Mohammadi, R., Taheri-Kafrani, A., Shahsavani, M. B., Aseman, M. D., Nabavizadeh, S. M., & Moosavi-Movahedi, A.-A. (2015). Study of the interaction between two newly synthesized cyclometallated platinum (II) complexes and human serum albumin: Spectroscopic characterization and docking simulation. Journal of Luminescence, 159, 139–146. doi:10.1016/j.jlumin.2014.10.055
  • Zhang, Y., Shi, S., Chen, X., Zhang, W., Huang, K., & Peng, M. (2011). Investigation on the interaction between ilaprazole and bovine serum albumin without or with different C-ring flavonoids from the viewpoint of food–drug interference. Journal of Agricultural and Food Chemistry, 59(15), 8499–8506. doi:10.1021/jf201796x
  • Zhang, G., Wang, L., & Pan, J. (2012). Probing the binding of the flavonoid diosmetin to human serum albumin by multispectroscopic techniques. Journal of Agricultural and Food Chemistry, 60(10), 2721–2729. doi:10.1021/jf205260g

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.