284
Views
13
CrossRef citations to date
0
Altmetric
Research Article

Molecular dynamics of a far positioned SOD1 mutant V14M reveals pathogenic misfolding behavior

&
Pages 4085-4098 | Received 14 Sep 2017, Accepted 14 Nov 2017, Published online: 07 Dec 2017

References

  • Abreu, I. A., & Cabelli, D. E. (2010). Superoxide dismutases-a review of the metal-associated mechanistic variations. Biochimica et Biophysica Acta, 1804(2), 263–274.10.1016/j.bbapap.2009.11.005
  • Alscher, R. G., Erturk, N., & Heath, L. S. (2002). Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. Journal of Experimental Botany, 53(372), 1331–1341.10.1093/jexbot/53.372.1331
  • Andersen, P. M. (2006). Amyotrophic lateral sclerosis associated with mutations in the CuZn superoxide dismutase gene. Current Neurology and Neuroscience Reports, 6(1), 37–46.10.1007/s11910-996-0008-9
  • Andersen, P. M., Nilsson, P., Keranen, M. L., Forsgren, L., Hagglund, J., Karlsborg, M., & Marklund, S. L. (1997). Phenotypic heterogeneity in motor neuron disease patients with CuZn-superoxide dismutase mutations in Scandinavia. Brain, 120(Pt 10), 1723–1737.10.1093/brain/120.10.1723
  • Andersen, P. M., Sims, K. B., Xin, W. W., Kiely, R., O’Neill, G., Ravits, J., & Brown, R. H., Jr (2003). Sixteen novel mutations in the Cu/Zn superoxide dismutase gene in amyotrophic lateral sclerosis: A decade of discoveries, defects and disputes. Amyotroph Lateral Sclerosis and Other Motor Neuron Disorders, 4(2), 62–73.10.1080/14660820310011700
  • Antonyuk, S., Elam, J. S., Hough, M. A., Strange, R. W., Doucette, P. A., Rodriguez, J. A., & Hasnain, S. S. (2005). Structural consequences of the familial amyotrophic lateral sclerosis SOD1 mutant His46Arg. Protein Science, 14(5), 1201–1213.10.1110/(ISSN)1469-896X
  • Auclair, J. R., Boggio, K. J., Petsko, G. A., Ringe, D., & Agar, J. N. (2010). Strategies for stabilizing superoxide dismutase (SOD1), the protein destabilized in the most common form of familial amyotrophic lateral sclerosis. Proceedings of the National Academy of Sciences USA, 107(50), 21394–21399.10.1073/pnas.1015463107
  • Baker, E. N., & Hubbard, R. E. (1984). Hydrogen bonding in globular proteins. Progress in Biophysics & Molecular Biology, 44(2), 97–179.10.1016/0079-6107(84)90007-5
  • Banci, L., Bertini, I., Boca, M., Calderone, V., Cantini, F., Girotto, S., & Vieru, M. (2009). Structural and dynamic aspects related to oligomerization of apo SOD1 and its mutants. Proceedings of the National Academy of Sciences USA, 106(17), 6980–6985.10.1073/pnas.0809845106
  • Banci, L., Bertini, I., Cabelli, D. E., Hallewell, R. A., Tung, J. W., & Viezzoli, M. S. (1991). A characterization of copper/zinc superoxide dismutase mutants at position 124. Zinc-deficient proteins. European Journal of Biochemistry, 196(1), 123–128.10.1111/ejb.1991.196.issue-1
  • Banci, L., Bertini, I., Cramaro, F., Del Conte, R., Rosato, A., & Viezzoli, M. S. (2000). Backbone dynamics of human Cu, Zn superoxide dismutase and of its monomeric F50E/G51E/E133Q mutant: the influence of dimerization on mobility and function. Biochemistry, 39(31), 9108–9118.10.1021/bi000067z
  • Banci, L., Bertini, I., Del Conte, R., Fadin, R., Mangani, S., & Viezzoli, M. S. (1999). The solution structure of a monomeric, reduced form of human copper, zinc superoxide dismutase bearing the same charge as the native protein. Journal of Biological Inorganic Chemistry, 4(6), 795–803.10.1007/s007750050353
  • Banci, L., Bertini, I., Del Conte, R., & Viezzoli, M. S. (1999). Structural and functional studies of monomeric mutant of Cu-Zn superoxide dismutase without Arg 143. Biospectroscopy, 5(5 Suppl), S33–S41.10.1002/(ISSN)1520-6343
  • Banci, L., Bertini, I., Luchinat, C., & Hallewell, R. A. (1988). An investigation of superoxide dismutase Lys-143, Ile-143, and Glu-143 mutants: Cu2Co2SOD derivatives. Journal of the American Chemical Society, 110(11), 3629–3633.10.1021/ja00219a043
  • Bannister, J. V., Bannister, W. H., & Rotilio, G. (1987). Aspects of the structure, function, and applications of superoxide dismutase. CRC Critical Reviews in Biochememistry, 22(2), 111–180.
  • Barondeau, D. P., Kassmann, C. J., Bruns, C. K., Tainer, J. A., & Getzoff, E. D. (2004). Nickel superoxide dismutase structure and mechanism. Biochemistry, 43(25), 8038–8047.10.1021/bi0496081
  • Berendsen, H. J., Postma, J. P., van Gunsteren, W. F., & Hermans, J. (1981). Interaction models for water in relation to protein hydration. Intermolecular forces, 14, 331–342.10.1007/978-94-015-7658-1
  • Beyer, W. F., Jr, Fridovich, I., Mullenbach, G. T., & Hallewell, R. (1987). Examination of the role of arginine-143 in the human copper and zinc superoxide dismutase by site-specific mutagenesis. Journal of Biological Chemistry, 262(23), 11182–11187.
  • Borders, C. L., Jr, & Johansen, J. T. (1980). Identification of ARG-143 as the essential arginyl residue in yeast Cu,Zn superoxide dismutase by use of a chromophoric arginine reagent. Biochemical and Biophysical Research Communications, 96(3), 1071–1078.10.1016/0006-291X(80)90061-3
  • Borrelli, A., Schiattarella, A., Bonelli, P., Tuccillo, F. M., Buonaguro, F. M., & Mancini, A. (2014). The functional role of MnSOD as a biomarker of human diseases and therapeutic potential of a new isoform of a human recombinant MnSOD. BioMed Research International, 2014, 476789.
  • Cao, X., Antonyuk, S. V., Seetharaman, S. V., Whitson, L. J., Taylor, A. B., Holloway, S. P., & Hart, P. J. (2008). Structures of the G85R variant of SOD1 in familial amyotrophic lateral sclerosis. Journal of Biological Chemistry, 283(23), 16169–16177.10.1074/jbc.M801522200
  • Cardoso, R. M., Thayer, M. M., DiDonato, M., Lo, T. P., Bruns, C. K., Getzoff, E. D., & Tainer, J. A. (2002). Insights into Lou Gehrig's disease from the structure and instability of the A4V mutant of human Cu,Zn superoxide dismutase. Journal of Molecular Biology, 324(2), 247–256.10.1016/S0022-2836(02)01090-2
  • Chattopadhyay, M., Durazo, A., Sohn, S. H., Strong, C. D., Gralla, E. B., Whitelegge, J. P., & Valentine, J. S. (2008). Initiation and elongation in fibrillation of ALS-linked superoxide dismutase. Proceedings of the National Academy of Sciences USA, 105(48), 18663–18668.10.1073/pnas.0807058105
  • Chou, S. M., Wang, H. S., & Komai, K. (1996). Colocalization of NOS and SOD1 in neurofilament accumulation within motor neurons of amyotrophic lateral sclerosis: An immunohistochemical study. Journal of Chemical Neuroanatomy, 10(3–4), 249–258.10.1016/0891-0618(96)00137-8
  • Chou, S. M., Wang, H. S., & Taniguchi, A. (1996). Role of SOD-1 and nitric oxide/cyclic GMP cascade on neurofilament aggregation in ALS/MND. Journal of the Neurological Sciences, 139(Suppl), 16–26.10.1016/0022-510X(96)00090-1
  • Darden, T., York, D., & Pedersen, L. (1993). Particle mesh Ewald: An N⋅ log (N) method for Ewald sums in large systems. The Journal of Chemical Physics, 98(12), 10089–10092.10.1063/1.464397
  • DeLano, W. L. (2002). The PyMOL molecular graphics system. Retrieved from http://pymol.org
  • Deng, H. X., Tainer, J. A., Mitsumoto, H., Ohnishi, A., He, X., Hung, W. Y., & Siddique, T. (1995). Two novel SOD1 mutations in patients with familial amyotrophic lateral sclerosis. Human Molecular Genetics, 4(6), 1113–1116.10.1093/hmg/4.6.1113
  • DiDonato, M., Craig, L., Huff, M. E., Thayer, M. M., Cardoso, R. M., Kassmann, C. J., & Tainer, J. A. (2003). ALS mutants of human superoxide dismutase form fibrous aggregates via framework destabilization. Journal of Molecular Biology, 332(3), 601–615.10.1016/S0022-2836(03)00889-1
  • Ding, F., & Dokholyan, N. V. (2008). Dynamical roles of metal ions and the disulfide bond in Cu, Zn superoxide dismutase folding and aggregation. Proceedings of the National Academy of Sciences USA, 105(50), 19696–19701.10.1073/pnas.0803266105
  • Dupeyrat, F., Vidaud, C., Lorphelin, A., & Berthomieu, C. (2004). Long distance charge redistribution upon Cu, Zn-superoxide dismutase reduction: Significance for dismutase function. Journal of Biological Chemistry, 279(46), 48091–48101.10.1074/jbc.M402728200
  • Elam, J. S., Malek, K., Rodriguez, J. A., Doucette, P. A., Taylor, A. B., Hayward, L. J., & Hart, P. J. (2003a). An alternative mechanism of bicarbonate-mediated peroxidation by copper-zinc superoxide dismutase: Rates enhanced via proposed enzyme-associated peroxycarbonate intermediate. Journal of Biological Chemistry, 278(23), 21032–21039.10.1074/jbc.M300484200
  • Elam, J. S., Taylor, A. B., Strange, R., Antonyuk, S., Doucette, P. A., Rodriguez, J. A., & Hart, P. J. (2003b). Amyloid-like filaments and water-filled nanotubes formed by SOD1 mutant proteins linked to familial ALS. Nature Structural Biology, 10(6), 461–467.10.1038/nsb935
  • Essmann, U., Perera, L., Berkowitz, M. L., Darden, T., Lee, H., & Pedersen, L. G. (1995). A smooth particle mesh Ewald method. Journal of Chemical Physics, 103(19), 8577–8593.10.1063/1.470117
  • Estevez, A. G., Crow, J. P., Sampson, J. B., Reiter, C., Zhuang, Y., Richardson, G. J., & Beckman, J. S. (1999). Induction of nitric oxide-dependent apoptosis in motor neurons by zinc-deficient superoxide dismutase. Science, 286(5449), 2498–2500.
  • Ferraroni, M., Rypniewski, W., Wilson, K. S., Viezzoli, M. S., Banci, L., Bertini, I., & Mangani, S. (1999). The crystal structure of the monomeric human SOD mutant F50E/G51E/E133Q at atomic resolution. The enzyme mechanism revisited. Journal of Molecular Biology, 288(3), 413–426.10.1006/jmbi.1999.2681
  • Fisher, C. L., Cabelli, D. E., Tainer, J. A., Hallewell, R. A., & Getzoff, E. D. (1994). The role of arginine 143 in the electrostatics and mechanism of Cu, Zn superoxide dismutase: Computational and experimental evaluation by mutational analysis. Proteins, 19(1), 24–34.10.1002/(ISSN)1097-0134
  • Fridovich, I. (1975). Superoxide dismutases. Annual Review of Biochemistry, 44, 147–159.10.1146/annurev.bi.44.070175.001051
  • Getzoff, E. D., Cabelli, D. E., Fisher, C. L., Parge, H. E., Viezzoli, M. S., Banci, L., & Hallewell, R. A. (1992). Faster superoxide dismutase mutants designed by enhancing electrostatic guidance. Nature, 358(6384), 347–351.10.1038/358347a0
  • Getzoff, E. D., Tainer, J. A., Stempien, M. M., Bell, G. I., & Hallewell, R. A. (1989). Evolution of CuZn superoxide dismutase and the Greek key beta-barrel structural motif. Proteins, 5(4), 322–336.10.1002/(ISSN)1097-0134
  • Getzoff, E. D., Tainer, J. A., Weiner, P. K., Kollman, P. A., Richardson, J. S., & Richardson, D. C. (1983). Electrostatic recognition between superoxide and copper, zinc superoxide dismutase. Nature, 306(5940), 287–290.10.1038/306287a0
  • Hayward, L. J., Rodriguez, J. A., Kim, J. W., Tiwari, A., Goto, J. J., Cabelli, D. E., & Brown, R. H. (2002). Decreased metallation and activity in subsets of mutant superoxide dismutases associated with familial amyotrophic lateral sclerosis. Journal of Biological Chemistry, 277(18), 15923–15931.10.1074/jbc.M112087200
  • Hess, B., Bekker, H., Berendsen, H. J., & Fraaije, J. G. (1997). LINCS: A linear constraint solver for molecular simulations. Journal of Computational Chemistry, 18(12), 1463–1472.10.1002/(ISSN)1096-987X
  • Hess, B., Kutzner, C., van der Spoel, D., & Lindahl, E. (2008). GROMACS 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation. Journal of Chemical Theory and Computation, 4(3), 435–447.10.1021/ct700301q
  • Hornberg, A., Logan, D. T., Marklund, S. L., & Oliveberg, M. (2007). The coupling between disulphide status, metallation and dimer interface strength in Cu/Zn superoxide dismutase. Journal of Molecular Biology, 365(2), 333–342.10.1016/j.jmb.2006.09.048
  • Hough, M. A., Grossmann, J. G., Antonyuk, S. V., Strange, R. W., Doucette, P. A., Rodriguez, J. A., & Hasnain, S. S. (2004). Dimer destabilization in superoxide dismutase may result in disease-causing properties: Structures of motor neuron disease mutants. Proceedings of the National Academy of Sciences USA, 101(16), 5976–5981.10.1073/pnas.0305143101
  • Huang, L. T., & Gromiha, M. M. (2009). Reliable prediction of protein thermostability change upon double mutation from amino acid sequence. Bioinformatics, 25(17), 2181–2187.10.1093/bioinformatics/btp370
  • Hubbard, S., & Thornton, J. (1993). NACCESS: Department of Biochemistry and Molecular Biology, University College London. Retrieved from http://www.bioinf.manchester.ac.uk/naccess/nacdownload.html
  • Hummer, G., Garde, S., Garcia, A. E., Pohorille, A., & Pratt, L. R. (1996). An information theory model of hydrophobic interactions. Proceedings of the National Academy of Sciences USA, 93(17), 8951–8955.10.1073/pnas.93.17.8951
  • Humphrey, W., Dalke, A., & Schulten, K. (1996). VMD: Visual molecular dynamics. Journal of Molecular Graphics, 14(1), 33–38, 27–38.10.1016/0263-7855(96)00018-5
  • Ip, P., Mulligan, V. K., & Chakrabartty, A. (2011). ALS-causing SOD1 mutations promote production of copper-deficient misfolded species. Journal of Molecular Biology, 409(5), 839–852.10.1016/j.jmb.2011.04.027
  • Jorgensen, W. L., & Tirado-Rives, J. (1988). The OPLS [optimized potentials for liquid simulations] potential functions for proteins, energy minimizations for crystals of cyclic peptides and crambin. Journal of the American Chemical Society, 110(6), 1657–1666.10.1021/ja00214a001
  • Karch, C. M., Prudencio, M., Winkler, D. D., Hart, P. J., & Borchelt, D. R. (2009). Role of mutant SOD1 disulfide oxidation and aggregation in the pathogenesis of familial ALS. Proceedings of the National Academy of Sciences USA, 106(19), 7774–7779.10.1073/pnas.0902505106
  • Keerthana, S. P., & Kolandaivel, P. (2015). Study of mutation and misfolding of Cu–Zn SOD1 protein. Journal of Biomolecular Structure and Dynamics, 33(1), 167–183.10.1080/07391102.2013.865104
  • Khare, S. D., Caplow, M., & Dokholyan, N. V. (2006). FALS mutations in Cu, Zn superoxide dismutase destabilize the dimer and increase dimer dissociation propensity: A large-scale thermodynamic analysis. Amyloid, 13(4), 226–235.10.1080/13506120600960486
  • Khare, S. D., & Dokholyan, N. V. (2006). Common dynamical signatures of familial amyotrophic lateral sclerosis-associated structurally diverse Cu, Zn superoxide dismutase mutants. Proceedings of the National Academy of Sciences USA, 103(9), 3147–3152.10.1073/pnas.0511266103
  • Kitamura, F., Fujimaki, N., Okita, W., Hiramatsu, H., & Takeuchi, H. (2011). Structural instability and Cu-dependent pro-oxidant activity acquired by the apo form of mutant SOD1 associated with amyotrophic lateral sclerosis. Biochemistry, 50(20), 4242–4250.10.1021/bi200338 h
  • Lah, M. S., Dixon, M. M., Pattridge, K. A., Stallings, W. C., Fee, J. A., & Ludwig, M. L. (1995). Structure-function in Escherichia coli iron superoxide dismutase: Comparisons with the manganese enzyme from Thermus thermophilus. Biochemistry, 34(5), 1646–1660.10.1021/bi00005a021
  • Lee, B., & Richards, F. M. (1971). The interpretation of protein structures: Estimation of static accessibility. Journal of Molecular Biology, 55(3), 379–400.10.1016/0022-2836(71)90324-X
  • Leinartaite, L., Saraboji, K., Nordlund, A., Logan, D. T., & Oliveberg, M. (2010). Folding catalysis by transient coordination of Zn2+ to the Cu ligands of the ALS-associated enzyme Cu/Zn superoxide dismutase 1. Journal of the American Chemical Society, 132(38), 13495–13504.10.1021/ja1057136
  • Lindberg, M. J., Tibell, L., & Oliveberg, M. (2002). Common denominator of Cu/Zn superoxide dismutase mutants associated with amyotrophic lateral sclerosis: Decreased stability of the apo state. Proceedings of the National Academy of Sciences USA, 99(26), 16607–16612.10.1073/pnas.262527099
  • Liu, H., Zhu, H., Eggers, D. K., Nersissian, A. M., Faull, K. F., Goto, J. J., & Valentine, J. S. (2000). Copper (2+) binding to the surface residue cysteine 111 of His46Arg human copper − zinc superoxide dismutase, a familial amyotrophic lateral sclerosis mutant. Biochemistry, 39(28), 8125–8132.10.1021/bi000846f
  • Liu, W. C., Liu, T., Liu, Z. H., & Deng, M. (2016). Detection the mutated protein aggregation and mitochondrial function in fibroblasts from amyotrophic lateral sclerosis patients with SOD1 gene mutations. Zhonghua Yi Xue Za Zhi, 96(25), 1982–1986.
  • Malinowski, D. P., & Fridovich, I. (1979). Chemical modification of arginine at the active site of the bovine erythrocyte superoxide dismutase. Biochemistry, 18(26), 5909–5917.10.1021/bi00593a023
  • Marquardt, D. W. (1963). An algorithm for least-squares estimation of nonlinear parameters. Journal of the Society for Industrial and Applied Mathematics, 11(2), 431–441.10.1137/0111030
  • Mates, J. M., & Sanchez-Jimenez, F. M. (2000). Role of reactive oxygen species in apoptosis: Implications for cancer therapy. International Journal of Biochemistry & Cell Biology, 32(2), 157–170.10.1016/S1357-2725(99)00088-6
  • McDonald, I., Jones, D., Naylor, D., & Thornton, J. (1993). HBPLUS, a computer program for calculating potential hydrogen bonds in protein structures. London: Department of Biochemistry, University College London.
  • McDonald, I. K., & Thornton, J. M. (1994). Satisfying hydrogen bonding potential in proteins. Journal of Molecular Biology, 238(5), 777–793.10.1006/jmbi.1994.1334
  • Milardi, D., Pappalardo, M., Grasso, D. M., & La Rosa, C. (2010). Unveiling the unfolding pathway of FALS associated G37R SOD1 mutant: A computational study. Molecular BioSystems, 6(6), 1032–1039.10.1039/b918662j
  • Mitchell, J. D., & Borasio, G. D. (2007). Amyotrophic lateral sclerosis. Lancet, 369(9578), 2031–2041.10.1016/S0140-6736(07)60944-1
  • Mulder, D. W., Kurland, L. T., Offord, K. P., & Beard, C. M. (1986). Familial adult motor neuron disease: Amyotrophic lateral sclerosis. Neurology, 36(4), 511–517.10.1212/WNL.36.4.511
  • Mulligan, V. K., Kerman, A., Ho, S., & Chakrabartty, A. (2008). Denaturational stress induces formation of zinc-deficient monomers of Cu,Zn superoxide dismutase: Implications for pathogenesis in amyotrophic lateral sclerosis. Journal of Molecular Biology, 383(2), 424–436.10.1016/j.jmb.2008.08.024
  • Muneeswaran, G., Kartheeswaran, S., Muthukumar, K., Dharmaraj, C. D., & Karunakaran, C. (2014). Comparative structural and conformational studies on H43R and W32F mutants of copper-zinc superoxide dismutase by molecular dynamics simulation. Biophysical Chemistry, 185, 70–78.10.1016/j.bpc.2013.11.010
  • Nedd, S., Redler, R. L., Proctor, E. A., Dokholyan, N. V., & Alexandrova, A. N. (2014). Cu,Zn-superoxide dismutase without Zn is folded but catalytically inactive. Journal of Molecular Biology, 426(24), 4112–4124.10.1016/j.jmb.2014.07.016
  • Nordlund, A., & Oliveberg, M. (2006). Folding of Cu/Zn superoxide dismutase suggests structural hotspots for gain of neurotoxic function in ALS: Parallels to precursors in amyloid disease. Proceedings of the National Academy of Sciences USA, 103(27), 10218–10223.10.1073/pnas.0601696103
  • Nordlund, A., & Oliveberg, M. (2008). SOD1-associated ALS: A promising system for elucidating the origin of protein-misfolding disease. HFSP Journal, 2(6), 354–364.10.2976/1.2995726
  • Nordlund, A., Leinartaite, L., Saraboji, K., Aisenbrey, C., Grobner, G., Zetterstrom, P., & Oliveberg, M. (2009). Functional features cause misfolding of the ALS-provoking enzyme SOD1. Proceedings of the National Academy of Sciences USA, 106(24), 9667–9672.10.1073/pnas.0812046106
  • Oztug Durer, Z. A., Cohlberg, J. A., Dinh, P., Padua, S., Ehrenclou, K., Downes, S., & Valentine, J. S. (2009). Loss of metal ions, disulfide reduction and mutations related to familial ALS promote formation of amyloid-like aggregates from superoxide dismutase. PLoS ONE, 4(3), e5004.10.1371/journal.pone.0005004
  • Pace, C. N. (1992). Contribution of the hydrophobic effect to globular protein stability. Journal of Molecular Biology, 226(1), 29–35.10.1016/0022-2836(92)90121-Y
  • Parge, H. E., Hallewell, R. A., & Tainer, J. A. (1992). Atomic structures of wild-type and thermostable mutant recombinant human Cu, Zn superoxide dismutase. Proceedings of the National Academy of Sciences USA, 89(13), 6109–6113.10.1073/pnas.89.13.6109
  • Pica, A., Di Santi, A., Basile, F., Iacobellis, F., Borrelli, A., Schiattarella, A., … Mancini, A. (2010). Anti-cancer, anti-necrotic and imaging tumor marker role of a novel form of manganese superoxide dismutase and its leader peptide. International Journal of Biology and Biomedical Engineering, 4(3), 53–60.
  • Prudencio, M., Hart, P. J., Borchelt, D. R., & Andersen, P. M. (2009). Variation in aggregation propensities among ALS-associated variants of SOD1: Correlation to human disease. Human Molecular Genetics, 18(17), 3217–3226.10.1093/hmg/ddp260
  • Rabinowitch, H. D., & Fridovich, I. (1983). Superoxide radicals, superoxide dismutases and oxygen toxicity in plants. Photochemistry and Photobiology, 37(6), 679–690.10.1111/php.1983.37.issue-6
  • Rakhit, R., Crow, J. P., Lepock, J. R., Kondejewski, L. H., Cashman, N. R., & Chakrabartty, A. (2004). Monomeric Cu, Zn-superoxide dismutase is a common misfolding intermediate in the oxidation models of sporadic and familial amyotrophic lateral sclerosis. Journal of Biological Chemistry, 279(15), 15499–15504.10.1074/jbc.M313295200
  • Roberts, B. R., Tainer, J. A., Getzoff, E. D., Malencik, D. A., Anderson, S. R., Bomben, V. C., & Beckman, J. S. (2007). Structural characterization of Zinc-deficient human superoxide dismutase and implications for ALS. Journal of Molecular Biology, 373(4), 877–890.10.1016/j.jmb.2007.07.043
  • Rodriguez, J. A., Valentine, J. S., Eggers, D. K., Roe, J. A., Tiwari, A., Brown, R. H., & Hayward, L. J. (2002). Familial amyotrophic lateral sclerosis-associated mutations decrease the thermal stability of distinctly metallated species of human Copper/Zinc superoxide dismutase. Journal of Biological Chemistry, 277(18), 15932–15937.10.1074/jbc.M112088200
  • Rosen, D. R., Siddique, T., Patterson, D., Figlewicz, D. A., Sapp, P., Hentati, A., … Brown Jr., R. H. (1993). Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature, 362(6415), 59–62.10.1038/362059a0
  • Schmidlin, T., Kennedy, B. K., & Daggett, V. (2009). Structural changes to monomeric CuZn superoxide dismutase caused by the familial amyotrophic lateral sclerosis-associated mutation A4V. Biophysical Journal, 97(6), 1709–1718.10.1016/j.bpj.2009.06.043
  • Seetharaman, S. V., Prudencio, M., Karch, C., Holloway, S. P., Borchelt, D. R., & Hart, P. J. (2009). Immature copper-zinc superoxide dismutase and familial amyotrophic lateral sclerosis. Experimental Biology and Medicine, 234(10), 1140–1154.10.3181/0903-MR-104
  • Seetharaman, S. V., Winkler, D. D., Taylor, A. B., Cao, X., Whitson, L. J., Doucette, P. A., & Hart, P. J. (2010). Disrupted zinc-binding sites in structures of pathogenic SOD1 variants D124V and H80R. Biochemistry, 49(27), 5714–5725.10.1021/bi100314n
  • Sentman, M. L., Brannstrom, T., & Marklund, S. L. (2002). EC-SOD and the response to inflammatory reactions and aging in mouse lung. Free Radical Biology and Medicine, 32(10), 975–981.10.1016/S0891-5849(02)00790-6
  • Son, M., Srikanth, U., Puttaparthi, K., Luther, C., & Elliott, J. L. (2011). Biochemical properties and in vivo effects of the SOD1 zinc-binding site mutant (H80G). Journal of Neurochemistry, 118(5), 891–901.10.1111/jnc.2011.118.issue-5
  • Stathopulos, P. B., Rumfeldt, J. A., Scholz, G. A., Irani, R. A., Frey, H. E., Hallewell, R. A., & Meiering, E. M. (2003). Cu/Zn superoxide dismutase mutants associated with amyotrophic lateral sclerosis show enhanced formation of aggregates in vitro. Proceedings of the National Academy of Sciences USA, 100(12), 7021–7026.10.1073/pnas.1237797100
  • Strange, R. W., Antonyuk, S., Hough, M. A., Doucette, P. A., Rodriguez, J. A., Hart, P. J., & Hasnain, S. S. (2003). The structure of holo and metal-deficient wild-type human Cu, Zn superoxide dismutase and its relevance to familial amyotrophic lateral sclerosis. Journal of Molecular Biology, 328(4), 877–891.10.1016/S0022-2836(03)00355-3
  • Tainer, J. A., Getzoff, E. D., Beem, K. M., Richardson, J. S., & Richardson, D. C. (1982). Determination and analysis of the 2 A-structure of copper, zinc superoxide dismutase. Journal of Molecular Biology, 160(2), 181–217.10.1016/0022-2836(82)90174-7
  • Tainer, J. A., Getzoff, E. D., Richardson, J. S., & Richardson, D. C. (1983). Structure and mechanism of copper, zinc superoxide dismutase. Nature, 306(5940), 284–287.10.1038/306284a0
  • Tina, K. G., Bhadra, R., & Srinivasan, N. (2007). PIC: Protein interactions calculator. Nucleic Acids Research, 35(Web Server issue), W473–W476.10.1093/nar/gkm423
  • Trumbull, K. A., & Beckman, J. S. (2009). A role for copper in the toxicity of Zinc-deficient superoxide dismutase to motor neurons in amyotrophic lateral sclerosis. Antioxidants & Redox Signaling, 11(7), 1627–1639.10.1089/ars.2009.2574
  • Turner, B. J., & Talbot, K. (2008). Transgenics, toxicity and therapeutics in rodent models of mutant SOD1-mediated familial ALS. Progress in Neurobiology, 85(1), 94–134.10.1016/j.pneurobio.2008.01.001
  • Valentine, J. S., & Hart, P. J. (2003). Misfolded CuZnSOD and amyotrophic lateral sclerosis. Proceedings of the National Academy of Sciences USA, 100(7), 3617–3622.10.1073/pnas.0730423100
  • Van Der Spoel, D., Lindahl, E., Hess, B., Groenhof, G., Mark, A. E., & Berendsen, H. J. (2005). GROMACS: Fast, flexible, and free. Journal of Computational Chemistry, 26(16), 1701–1718.10.1002/(ISSN)1096-987X
  • Van Gunsteren, W. F., & Berendsen, H. J. C. (1988). A leap-frog algorithm for stochastic dynamics. Molecular Simulation, 1(3), 173–185.10.1080/08927028808080941
  • Wang, J., Caruano-Yzermans, A., Rodriguez, A., Scheurmann, J. P., Slunt, H. H., Cao, X., & Borchelt, D. R. (2007). Disease-associated mutations at copper ligand histidine residues of superoxide dismutase 1 diminish the binding of copper and compromise dimer stability. Journal of Biological Chemistry, 282(1), 345–352.10.1074/jbc.M604503200
  • Wang, Q., Johnson, J. L., Agar, N. Y., & Agar, J. N. (2008). Protein aggregation and protein instability govern familial amyotrophic lateral sclerosis patient survival. PLoS Biology, 6(7), e170.10.1371/journal.pbio.0060170
  • Wu, Y., Tepper, H. L., & Voth, G. A. (2006). Flexible simple point-charge water model with improved liquid-state properties. Journal of Chemical Physics, 124(2), 024503.10.1063/1.2136877
  • Wuerges, J., Lee, J. W., Yim, Y. I., Yim, H. S., Kang, S. O., & Djinovic Carugo, K. (2004). Crystal structure of nickel-containing superoxide dismutase reveals another type of active site. Proceedings of the National Academy of Sciences USA, 101(23), 8569–8574.10.1073/pnas.0308514101

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.