234
Views
18
CrossRef citations to date
0
Altmetric
Research Article

ROS-mediated heme degradation and cytotoxicity induced by iron nanoparticles: hemoglobin and lymphocyte cells as targets

, , , , , , , & show all
Pages 4235-4245 | Received 19 Sep 2017, Accepted 08 Nov 2017, Published online: 18 Dec 2017

References

  • Ahamed, M., Akhtar, M. J., Siddiqui, M. A., Ahmad, J., Musarrat, J., Al-Khedhairy, A. A., … Alrokayan, S. A. (2011). Oxidative stress mediated apoptosis induced by nickel ferrite nanoparticles in cultured A549 cells. Toxicology, 283(2), 101–108.10.1016/j.tox.2011.02.010
  • Ahamed, M., Akhtar, M. J., Khan, M. M., Alhadlaq, H. A., & Alshamsan, A. (2016). Cobalt iron oxide nanoparticles induce cytotoxicity and regulate the apoptotic genes through ROS in human liver cells (HepG2). Colloids and Surfaces B: Biointerfaces, 1(148), 665–673.10.1016/j.colsurfb.2016.09.047
  • Ahamed, M. A., Alhadlaq, H., Alam, J., Khan, M., Ali, D., & Alarafi, S. (2013). Iron oxide nanoparticle-induced oxidative stress and genotoxicity in human skin epithelial and lung epithelial cell lines. Current Pharmaceutical Design, 19(37), 6681–6690.10.2174/1381612811319370011
  • Angelé-Martínez, C., Nguyen, K. V., Ameer, F. S., Anker, J. N., & Brumaghim, J. L. (2017). Reactive oxygen species generation by copper (II) oxide nanoparticles determined by DNA damage assays and EPR spectroscopy. Nanotoxicology, 11(2), 278–288.10.1080/17435390.2017.1293750
  • AshaRani, P. V., Low Kah Mun, G., Hande, M. P., & Valiyaveettil, S. (2008). Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano, 3(2), 279–290.
  • Chen, H., Cao, Y., Wei, E., Gong, T., & Xian, Q. (2016). Facile synthesis of graphene nano zero-valent iron composites and their efficient removal of trichloronitromethane from drinking water. Chemosphere, 146, 32–39.10.1016/j.chemosphere.2015.11.095
  • Choudhury, S. R., Ordaz, J., Lo, C. L., Damayanti, N. P., Zhou, F., & Irudayaraj, J. (2017). From the cover: Zinc oxide nanoparticles-induced reactive oxygen species promotes multimodal cyto-and epigenetic toxicity. Toxicological Sciences, 156(1), 261–274.
  • Dasgupta, N., Ranjan, S., Patra, D., Srivastava, P., Kumar, A., & Ramalingam, C. (2016). Bovine serum albumin interacts with silver nanoparticles with a ‘side-on’ or ‘end on’ conformation. Chemico-Biological Interactions, 253, 100–111.10.1016/j.cbi.2016.05.018
  • Esquerra, R. M., López-Peña, I., Tipgunlakant, P., Birukou, I., Nguyen, R. L., Soman, J., … Goldbeck, R. A. (2010). Kinetic spectroscopy of heme hydration and ligand binding in myoglobin and isolated hemoglobin chains: An optical window into heme pocket water dynamics. Physical Chemistry Chemical Physics, 12(35), 10270–10278.10.1039/c003606b
  • Feliu, N., Docter, D., Heine, M., del Pino, P., Ashraf, S., Kolosnjaj-Tabi, J., … Stauber, R. H. (2016). In vivo degeneration and the fate of inorganic nanoparticles. Chemical Society Reviews, 45(9), 2440–2457.10.1039/C5CS00699F
  • Fotouhi, L., Moosavi-Movahedi, A. A., Yousefinejad, S., Shourian, M., Sheibani, N., Habibi-Rezaei, M., & Saboury, A. A. (2016). Hydrophobic behavior, ROS production, and heme degradation of hemoglobin upon interaction with n-alkyl sulfates. Journal of the Iranian Chemical Society, 13(11), 2103–2111.10.1007/s13738-016-0928-5
  • Ghaderabad, M., Mansouri, M., Beigoli, S., Rad, A. S., Mehrzad, J., Saberi, M. R., & Chamani, J. (2017). A comparison of the inclusion behavior of human serum albumin and holo transferrin with fluoxymesterone in the presence of three different cyclodextrins. Journal of the Iranian Chemical Society, 14(7), 1347–1364.10.1007/s13738-017-1085-1
  • Ghobadi, R., Divsalar, A., Harifi-Mood, A. R., & Saboury, A. A. (2017). Spectroscopic investigation of bovine liver catalase interactions with a novel phen-imidazole derivative of platinum. Journal of Biomolecular Structure and Dynamics, 1, 1–7.10.1080/07391102.2017.1290551
  • Goodarzi, M., Moosavi-Movahedi, A. A., Habibi-Rezaei, M., Shourian, M., Ghourchian, H., Ahmad, F., … Sheibani, N. (2014). Hemoglobin fructation promotes heme degradation through the generation of endogenous reactive oxygen species. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 130, 561–567.10.1016/j.saa.2014.04.056
  • Guo, D. D., Li, Q., Tang, H. Y., Su, J., & Bi, H. S. (2016). Zinc oxide nanoparticles inhibit expression of manganese superoxide dismutase via amplification of oxidative stress, in murine photoreceptor cells. Cell Proliferation, 49(3), 386–394.10.1111/cpr.2016.49.issue-3
  • Keenan, C. R., Goth-Goldstein, R., Lucas, D., & Sedlak, D. L. (2009). Oxidative stress induced by zero-valent iron nanoparticles and Fe (II) in human bronchial epithelial cells. Environmental Science & Technology, 43(12), 4555–4560.10.1021/es9006383
  • Khan, M. I., Mohammad, A., Patil, G., Naqvi, S. A., Chauhan, L. K., & Ahmad, I. (2012). Induction of ROS, mitochondrial damage and autophagy in lung epithelial cancer cells by iron oxide nanoparticles. Biomaterials, 33(5), 1477–1488.10.1016/j.biomaterials.2011.10.080
  • Kirchner, C., Liedl, T., Kudera, S., Pellegrino, T., Muñoz Javier, A., Gaub, H. E., … Parak, W. J. (2005). Cytotoxicity of colloidal CdSe and CdSe/ZnS nanoparticles. Nano Letters, 5(2), 331–338.10.1021/nl047996 m
  • Kjærsgård, I. V., Nørrelykke, M. R., Baron, C. P., & Jessen, F. (2006). Identification of carbonylated protein in frozen rainbow trout (Oncorhynchus mykiss) fillets and development of protein oxidation during frozen storage. Journal of Agricultural and Food Chemistry, 54(25), 9437–9446.
  • Mahmoudi, M., Hofmann, H., Rothen-Rutishauser, B., & Petri-Fink, A. (2012). Assessing the in vitro and in vivo toxicity of superparamagnetic iron oxide nanoparticles. Chemical Reviews, 112(4), 2323–2338.10.1021/cr2002596
  • Mahmoudi, M., Shokrgozar, M. A., Sardari, S., Moghadam, M. K., Vali, H., Laurent, S., & Stroeve, P. (2011). Irreversible changes in protein conformation due to interaction with superparamagnetic iron oxide nanoparticles. Nanoscale, 3, 1127–1138.
  • Maldonado-Camargo, L., & Rinaldi, C. (2016). Breakdown of the stokes-einstein relation for the rotational diffusivity of polymer grafted nanoparticles in polymer melts. Nano Letters, 16(11), 6767–6773.10.1021/acs.nanolett.6b02359
  • Mariam, J., Sivakami, S., & Dongre, P. M. (2016). Albumin corona on nanoparticles – A strategic approach in drug delivery. Drug Delivery, 23(8), 2668–2676.
  • Marouzi, S., Rad, A. S., Beigoli, S., Baghaee, P. T., Darban, R. A., & Chamani, J. (2017). Study on effect of lomefloxacin on human holo-transferrin in the presence of essential and nonessential amino acids: Spectroscopic and molecular modeling approaches. International Journal of Biological Macromolecules, 97, 688–699.10.1016/j.ijbiomac.2017.01.047
  • Mobasherat Jajroud, S., Falahati, M., Attar, F., Khavari-Nejad, R. A. (2017). Human hemoglobin adsorption onto colloidal cerium oxide nanoparticles: A new model based on zeta potential and spectroscopy measurements. Journal of Biomolecular Structure and Dynamics, 1–26. just-accepted.10.1080/07391102.2017.1371645
  • Momeni, L., Shareghi, B., Saboury, A. A., & Evini, M. (2017). Interaction of TiO2 nanoparticle with trypsin analyzed by kinetic and spectroscopic methods. Monatshefte für Chemie-Chemical Monthly, 148(2), 199–207.10.1007/s00706-016-1772-0
  • Morgada, M. E., Levy, I. K., Salomone, V., Farías, S. S., López, G., & Litter, M. I. (2009). Arsenic (V) removal with nanoparticulate zerovalent iron: Effect of UV light and humic acids. Catalysis Today, 143(3), 261–268.10.1016/j.cattod.2008.09.038
  • Nagababu, E., & Rifkind, J. M. (2004). Heme degradation by reactive oxygen species. Antioxidants & Redox Signaling, 6(6), 967–978.10.1089/ars.2004.6.967
  • Naqvi, S., Samim, M., Abdin, M. Z., Ahmed, F. J., Maitra, A. N., Prashant, C. K., & Dinda, A. K. (2010). Concentration-dependent toxicity of iron oxide nanoparticles mediated by increased oxidative stress. International Journal of Nanomedicine, 5, 983–990.10.2147/IJN
  • Nohl, H., & Stolze, K. (1993). Chemiluminescence from activated heme compounds detected in the reaction of various xenobiotics with oxyhemoglobin: Comparison with several heme/hydrogen peroxide systems. Free Radical Biology and Medicine, 15(3), 257–263.10.1016/0891-5849(93)90072-3
  • Orlando, A., Cazzaniga, E., Tringali, M., Gullo, F., Becchetti, A., Minniti, S., … Re, F. (2017). Mesoporous silica nanoparticles trigger mitophagy in endothelial cells and perturb neuronal network activity in a size-and time-dependent manner. International Journal of Nanomedicine, 12, 3547.10.2147/IJN
  • Phenrat, T., Long, T. C., Lowry, G. V., & Veronesi, B. (2008). Partial oxidation (‘aging’) and surface modification decrease the toxicity of nanosized zerovalent iron. Environmental Science & Technology, 43(1), 195–200.
  • Prasad, S., Gupta, S. C., & Tyagi, A. K. (2017). Reactive oxygen species (ROS) and cancer: Role of antioxidative nutraceuticals. Cancer Letters, 387, 95–105.10.1016/j.canlet.2016.03.042
  • Rajiv, S., Jerobin, J., Saranya, V., Nainawat, M., Sharma, A., Makwana, P., … Mukherjee, A. (2016). Comparative cytotoxicity and genotoxicity of cobalt (II, III) oxide, iron (III) oxide, silicon dioxide, and aluminum oxide nanoparticles on human lymphocytes in vitro. Human & Experimental Toxicology, 35(2), 170–183.10.1177/0960327115579208
  • Reeder, B. J. (2017). Redox and peroxidase activities of the hemoglobin superfamily: Relevance to health and disease. Antioxidants & Redox Signaling, 26(14), 763–776.10.1089/ars.2016.6803
  • Sakipov, S., Rafikova, O., Kurnikova, M. G., & Rafikov, R. (2017). Molecular mechanisms of bio-catalysis of heme extraction from hemoglobin. Redox Biology, 11, 516–523.10.1016/j.redox.2017.01.004
  • Schuth, N., Mebs, S., Huwald, D., Wrzolek, P., Schwalbe, M., Hemschemeier, A., & Haumann, M. (2017). Effective intermediate-spin iron in O2-transporting heme proteins. Proceedings of the National Academy of Sciences, 114(32), 8556–8561.10.1073/pnas.1706527114
  • Shakeel, M., Jabeen, F., Shabbir, S., Asghar, M. S., Khan, M. S., & Chaudhry, A. S. (2016). Toxicity of nano-titanium dioxide (TiO2-NP) through various routes of exposure: A review. Biological Trace Element Research, 172(1), 1–36.10.1007/s12011-015-0550-x
  • Srinivasu, B. Y., Bose, B., Mitra, G., Kurpad, A. V., & Mandal, A. K. (2017). Adsorption induced changes of human hemoglobin on ferric pyrophosphate nanoparticle surface probed by isotope exchange mass spectrometry: An implication on structure–function correlation. Langmuir, 33(32), 8032–8042.10.1021/acs.langmuir.7b01905
  • Stefaniuk, M., Oleszczuk, P., & Ok, Y. S. (2016). Review on nano zerovalent iron (nZVI): From synthesis to environmental applications. Chemical Engineering Journal, 287, 618–632.10.1016/j.cej.2015.11.046
  • Suzuki, T., Miura, N., Hojo, R., Yanagiba, Y., Suda, M., Hasegawa, T., … Wang, R. S. (2016). Genotoxicity assessment of intravenously injected titanium dioxide nanoparticles in gpt delta transgenic mice. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 802, 30–37.10.1016/j.mrgentox.2016.03.007
  • Tramutola, A., Lanzillotta, C., Perluigi, M., & Butterfield, D. A. (2017). Oxidative stress, protein modification and Alzheimer disease. Brain Research Bulletin, 133, 88–96.10.1016/j.brainresbull.2016.06.005
  • Turci, F., Ghibaudi, E., Colonna, M., Boscolo, B., Fenoglio, I., & Fubini, B. (2010). An Integrated approach to the study of the interaction between proteins and nanoparticles. Langmuir, 26, 8336–8346.10.1021/la904758j
  • Uboldi, C., Urbán, P., Gilliland, D., Bajak, E., Valsami-Jones, E., Ponti, J., & Rossi, F. (2016). Role of the crystalline form of titanium dioxide nanoparticles: Rutile, and not anatase, induces toxic effects in Balb/3T3 mouse fibroblasts. Toxicology In Vitro, 31, 137–145.10.1016/j.tiv.2015.11.005
  • Ugur, Z., & Gronert, S. (2017). A robust analytical approach for the identification of specific protein carbonylation sites: Metal-catalyzed oxidations of human serum albumin. Analytical Letters, 50(3), 567–579.10.1080/00032719.2016.1186171
  • Valipour, M., Maghami, P., Habibi-Rezaei, M., Sadeghpour, M., Khademian, M. A., Mosavi, K., … Moosavi-Movahedi, A. A. (2017). Counteraction of the deleterious effects of reactive oxygen species on hemoglobin structure and function by ellagic acid. Journal of Luminescence, 182, 1–7.10.1016/j.jlumin.2016.10.003
  • Weng, S. L., Huang, K. Y., Kaunang, F. J., Huang, C. H., Kao, H. J., Chang, T. H., … Lee, T. Y. (2017). Investigation and identification of protein carbonylation sites based on position-specific amino acid composition and physicochemical features. BMC Bioinformatics, 18(3), 66–70.10.1186/s12859-017-1472-8
  • Xiao, L., Liu, C., Chen, X., & Yang, Z. (2016). Zinc oxide nanoparticles induce renal toxicity through reactive oxygen species. Food and Chemical Toxicology, 90, 76–83.10.1016/j.fct.2016.02.002
  • Zhao, X., Liu, W., Cai, Z., Han, B., Qian, T., & Zhao, D. (2016). An overview of preparation and applications of stabilized zero-valent iron nanoparticles for soil and groundwater remediation. Water Research, 100, 245–266.10.1016/j.watres.2016.05.019

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.