440
Views
36
CrossRef citations to date
0
Altmetric
Research Article

Antibiotics potentiating potential of catharanthine against superbug Pseudomonas aeruginosa

ORCID Icon, , ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 4270-4284 | Received 26 Oct 2017, Accepted 24 Nov 2017, Published online: 02 Jan 2018

References

  • Aires, J. R., Pechère, J.-C., Van Delden, C., & Köhler, T. (2002). Amino acid residues essential for function of the MexF efflux pump protein of Pseudomonas aeruginosa. Antimicrobial Agents and Chemotherapy, 46(7), 2169–2173.10.1128/AAC.46.7.2169-2173.2002
  • Aygül, A. (2015). The importance of efflux systems in antibiotic resistance and efflux pump inhibitors in the management of resistance. Mikrobiyoloji Bülteni, 49(2), 278–291.10.5578/mb.8964
  • Cabot, G., Ocampo-Sosa, A. A., Tubau, F., Macia, M. D., Rodríguez, C., Moya, B., … Spanish Network for Research in Infectious Diseases (REIPI). (2011). Overexpression of AmpC and efflux pumps in Pseudomonas aeruginosa isolates from bloodstream infections: Prevalence and impact on resistance in a Spanish multicenter study. Antimicrobial Agents and Chemotherapy, 55(5), 1906–1911. doi:10.1128/AAC.01645-10
  • Catry, B., Cavaleri, M., Baptiste, K., Grave, K., Grein, K., Holm, A., … Edo, J. T. (2015). Use of colistin-containing products within the European Union and European Economic Area (EU/EEA): Development of resistance in animals and possible impact on human and animal health. International Journal of Antimicrobial Agents, 46(3), 297–306. doi:10.1016/j.ijantimicag.2015.06.005
  • Cellular Gatekeepers. (2016). Focus on membrane proteins. Nature Structural & Molecular Biology, 23(6), 464. doi:10.1038/nsmb.3246
  • Clinical and Laboratory Standards Institute. (2015). Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically – Tenth edition: Approved standard M07-A10. Author.
  • Collu, F., & Cascella, M. (2013). Multidrug resistance and efflux pumps: Insights from molecular dynamics simulations. Current Topics in Medicinal Chemistry, 13(24), 3165–3183.10.2174/15680266113136660224
  • De Kievit, T. R., Parkins, M. D., Gillis, R. J., Srikumar, R., Ceri, H., Poole, K., … Storey, D. G. (2001). Multidrug efflux pumps: Expression patterns and contribution to antibiotic resistance in Pseudomonas aeruginosa biofilms. Antimicrobial Agents and Chemotherapy, 45(6), 1761–1770. doi:10.1128/AAC.45.6.1761-1770.2001
  • Denisov, I. G., & Sligar, S. G. (2016). Nanodiscs for structural and functional studies of membrane proteins. Nature Structural & Molecular Biology, 23(6), 481–486. doi:10.1038/nsmb.3195
  • Dixon, R. E., & Centers for Disease Control and Prevention (CDC). (2011). Control of health-care-associated infections, 1961–2011. Morbidity and Mortality Weekly Report. Surveillance Summaries, 60(Suppl 4), 58–63.
  • Draenert, R., Seybold, U., Grützner, E., & Bogner, J. R. (2015). Novel antibiotics: Are we still in the pre–post-antibiotic era? Infection, 43(2), 145–151. doi:10.1007/s15010-015-0749-y
  • Dwivedi, G. R., Gangwar, B., Gupta, M. K., Gupta, P., Singh, Devendra P., Verma, S. K., & Darokar, M. P. (2017). Determination of MDR mechanisms of P. aeruginosa clinical isolates. EC Microbiology, 5(6), 241–247.
  • Dwivedi, G. R., Gupta, S., Maurya, A., Tripathi, S., Sharma, A., Darokar, M. P., & Srivastava, S. K. (2015). Synergy potential of indole alkaloids and its derivative against drug-resistant Escherichia coli. Chemical Biology & Drug Design, 86(6), 1471–1481. doi:10.1111/cbdd.12613
  • Dwivedi, G. R., Gupta, S., Roy, S., Kalani, K., Pal, A., Thakur, J. P., … Srivastava, S. K. (2013). Tricyclic sesquiterpenes from Vetiveria zizanoides (L.) nash as antimycobacterial agents. Chemical Biology & Drug Design, 82(5), 587–594. doi:10.1111/cbdd.12188
  • Dwivedi, G. R., Maurya, A., Yadav, D. K., Khan, F., Darokar, M. P., & Srivastava, S. K. (2015). Drug resistance reversal potential of ursolic acid derivatives against nalidixic acid- and multidrug-resistant Escherichia coli. Chemical Biology & Drug Design, 86(3), 272–283. doi:10.1111/cbdd.12491
  • Dwivedi, G. R., Sanchita, G., Singh, D. P., Sharma, A., Darokar, M. P., & Srivastava, S. K. (2016). Nano particles: Emerging warheads against bacterial superbugs. Current Topics in Medicinal Chemistry, 16(18), 1963–1975.10.2174/1568026616666160215154556
  • Dwivedi, G. R., Tiwari, N., Singh, A., Kumar, A., Roy, S., Negi, A. S., … Darokar, M. P. (2016). Gallic acid-based indanone derivative interacts synergistically with tetracycline by inhibiting efflux pump in multidrug resistant E. coli. Applied Microbiology and Biotechnology, 100(5), 2311–2325. doi:10.1007/s00253-015-7152-6
  • Dwivedi, G. R., Upadhyay, H. C., Yadav, D. K., Singh, V., Srivastava, S. K., Khan, F., … Darokar, M. P. (2014). 4-Hydroxy-α-tetralone and its derivative as drug resistance reversal agents in multi drug resistant Escherichia coli. Chemical Biology & Drug Design, 83(4), 482–492. doi:10.1111/cbdd.12263
  • El Zowalaty, M. E., Al Thani, A. A., Webster, T. J., El Zowalaty, A. E., Schweizer, H. P., Nasrallah, G. K., … Ashour, H. M. (2015). Pseudomonas aeruginosa: Arsenal of resistance mechanisms, decades of changing resistance profiles, and future antimicrobial therapies. Future Microbiology, 10, 1683–1706. doi:10.2217/fmb.15.48
  • Eliopoulos, G. M., & Moellering, R. C. J. (1996). Antimicrobial combinations. In Antibiotics in laboratory medicine (4th ed., pp. 330–336). Baltimore, MD: Williams & Wilkins.
  • Eliopoulos, G. M., & Wennersten, C. B. (2002). Antimicrobial activity of quinupristin-dalfopristin combined with other antibiotics against vancomycin-resistant enterococci. Antimicrobial Agents and Chemotherapy, 46(5), 1319–1324.10.1128/AAC.46.5.1319-1324.2002
  • Fong, J. H., & Marchler-Bauer, A. (2008). Protein subfamily assignment using the conserved domain database. BMC Research Notes, 1(1), 114. doi:10.1186/1756-0500-1-114
  • Giske, C. G., Buarø, L., Sundsfjord, A., & Wretlind, B. (2008). Alterations of porin, pumps, and penicillin-binding proteins in carbapenem resistant clinical isolates of Pseudomonas aeruginosa. Microbial Drug Resistance, 14(1), 23–30. doi:10.1089/mdr.2008.0778
  • Goodsell, D. S., Morris, G. M., & Olson, A. J. (1996). Automated docking of flexible ligands: Applications of autodock. Journal of Molecular Recognition: JMR, 9(1), 1–5. doi:10.1002/(SICI)1099-1352(199601)9:1<1::AID-JMR241>3.0.CO;2-6
  • Gould, I. M. (2009). Antibiotic resistance: The perfect storm. International Journal of Antimicrobial Agents, 34(Suppl 3), S2–S5. doi:10.1016/S0924-8579(09)70549-7
  • Grgurich, P. E., Hudcova, J., Lei, Y., Sarwar, A., & Craven, D. E. (2012). Management and prevention of ventilator-associated pneumonia caused by multidrug-resistant pathogens. Expert Review of Respiratory Medicine, 6(5), 533–555. doi:10.1586/ers.12.45
  • Handzlik, J., Matys, A., & Kieć-kononowicz, K. (2013). Recent advances in multi-drug resistance (MDR) efflux pump inhibitors of gram-positive bacteria S. aureus. Antibiotics, 2, 28–45. doi:10.3390/antibiotics2010028
  • Heisig, P., & Tschorny, R. (1994). Characterization of fluoroquinolone-resistant mutants of Escherichia coli selected in vitro. Antimicrobial Agents and Chemotherapy, 38(6), 1284–1291.10.1128/AAC.38.6.1284
  • Hevener, K. E., Cao, S., Zhu, T., Su, P.-C., Mehboob, S., & Johnson, M. E. (2013). Special challenges to the rational design of antibacterial agents. In Annual reports in medicinal chemistry (pp. 283–298). Elsevier. Retrieved from http://linkinghub.elsevier.com/retrieve/pii/B9780124171503000181
  • Higgins, M. K., Bokma, E., Koronakis, E., Hughes, C., & Koronakis, V. (2004). Structure of the periplasmic component of a bacterial drug efflux pump. Proceedings of the National Academy of Sciences, 101(27), 9994–9999. doi:10.1073/pnas.0400375101
  • Infectious Diseases Society of America. (2010). The 10 × ‘20 initiative: Pursuing a global commitment to develop 10 new antibacterial drugs by 2020. Clinical Infectious Diseases: An Official Publication of the Infectious Diseases Society of America, 50(8), 1081–1083. doi:10.1086/652237
  • Jones, K. E., Patel, N. G., Levy, M. A., Storeygard, A., Balk, D., Gittleman, J. L., & Daszak, P. (2008). Global trends in emerging infectious diseases. Nature, 451(7181), 990–993. doi:10.1038/nature06536
  • Khan, I. A., Mirza, Z. M., Kumar, A., Verma, V., & Qazi, G. N. (2006). Piperine, a phytochemical potentiator of ciprofloxacin against Staphylococcus aureus. Antimicrobial Agents and Chemotherapy, 50(2), 810–812. doi:10.1128/AAC.50.2.810-812.2006
  • Kulshin, V. A., Zähringer, U., Lindner, B., Jäger, K. E., Dmitriev, B. A., & Rietschel, E. T. (1991). Structural characterization of the lipid A component of Pseudomonas aeruginosa wild-type and rough mutant lipopolysaccharides. European Journal of Biochemistry/FEBS, 198(3), 697–704.10.1111/ejb.1991.198.issue-3
  • Kumar, A., Khan, I. A., Koul, S., Koul, J. L., Taneja, C., Ali, I., & Qazi, G. N. (2008). Novel structural analogues of piperine as inhibitors of the NorA efflux pump of Staphylococcus aureus, 61(6), 1270–1276. doi:10.1093/jac/dkn088
  • Lamers, R. P., Cavallari, J. F., & Burrows, L. L. (2013). The efflux inhibitor phenylalanine-arginine beta-naphthylamide (PAβN) permeabilizes the outer membrane of gram-negative bacteria. PLoS ONE, 8(3), e60666. doi:10.1371/journal.pone.0060666
  • Li, X.-Z., Plésiat, P., & Nikaido, H. (2015). The challenge of efflux-mediated antibiotic resistance in gram-negative bacteria. Clinical Microbiology Reviews, 28(2), 337–418. doi:10.1128/CMR.00117-14
  • Ling, L. L., Schneider, T., Peoples, A. J., Spoering, A. L., Engels, I., Conlon, B. P., … Lewis, K. (2015). A new antibiotic kills pathogens without detectable resistance. Nature, 517(7535), 455–459. doi:10.1038/nature14098
  • Lomovskaya, O., & Watkins, W. J. (2001). Efflux pumps: Their role in antibacterial drug discovery. Current Medicinal Chemistry, 8(14), 1699–1711.10.2174/0929867013371743
  • Lomovskaya, O., Warren, M. S., Lee, A., Galazzo, J., Fronko, R., Lee, M., … Lee, V. J. (2001). Identification and characterization of inhibitors of multidrug resistance efflux pumps in Pseudomonas aeruginosa: Novel agents for combination therapy. Antimicrobial Agents and Chemotherapy, 45(1), 105–116. doi:10.1128/AAC.45.1.105-116.2001
  • Marchler-Bauer, A., Lu, S., Anderson, J. B., Chitsaz, F., Derbyshire, M. K., DeWeese-Scott, C., … Bryant, S. H. (2011). CDD: A conserved domain database for the functional annotation of proteins. Nucleic Acids Research, 39(Database), 225–229. doi:10.1093/nar/gkq1189
  • Maroyi, A. (2013). Traditional use of medicinal plants in south-central Zimbabwe: Review and perspectives. Journal of Ethnobiology and Ethnomedicine, 9(1), 31. doi:10.1186/1746-4269-9-31
  • Martens, E., & Demain, A. L. (2017). The antibiotic resistance crisis, with a focus on the United States. The Journal of Antibiotics, 70(5), 520–526. doi:10.1038/ja.2017.30
  • Martins, M., Couto, I., Viveiros, M., & Amaral, L. (2010). Identification of efflux-mediated multi-drug resistance in bacterial clinical isolates by two simple methods. In S. H. Gillespie & T. D. McHugh (Eds.), Antibiotic resistance protocols, Vol. 642 (pp. 143–157). Totowa, NJ: Humana Press . Retrieved from http://link.springer.com/10.1007/978-1-60327-279-7_11.10.1007/978-1-60327-279-7
  • Meletis, G. (2016). Carbapenem resistance: Overview of the problem and future perspectives. Therapeutic Advances in Infectious Disease, 3(1), 15–21. doi:10.1177/2049936115621709
  • Moisan, L., Comesse, S., Giovanelli, E., Rousseau, B., & Doris, E.. (2012). Fluorinated catharanthine derivatives, their preparation and their utilisation as vinca dimeric alkaloid precursors. US 8,101,748 B2.
  • Monlezun, L., Phan, G., Benabdelhak, H., Lascombe, M.-B., Enguéné, V. Y. N., Picard, M., & Broutin, I. (2015). New OprM structure highlighting the nature of the N-terminal anchor. Frontiers in Microbiology, 6, 667. doi:10.3389/fmicb.2015.00667
  • Morris, G. M., Goodsell, D. S., Halliday, R. S., Huey, R., Hart, W. E., Belew, R. K., & Olson, A. J. (1998). Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. Journal of Computational Chemistry, 19(14), 1639–1662. doi:10.1002/(SICI)1096-987X(19981115)19:14<1639::AID-JCC10>3.0.CO;2-B
  • Nakashima, R., Sakurai, K., Yamasaki, S., Hayashi, K., Nagata, C., Hoshino, K., … Yamaguchi, A. (2013). Structural basis for the inhibition of bacterial multidrug exporters. Nature, 500(7460), 102–106. doi:10.1038/nature12300
  • Nikaido, H. (2003). Molecular basis of bacterial outer membrane permeability revisited. Microbiology and Molecular Biology Reviews: MMBR, 67(4), 593–656.10.1128/MMBR.67.4.593-656.2003
  • Nikaido, H. (2009). Multidrug resistance in bacteria. Annual Review of Biochemistry, 78, 119–146. doi:10.1146/annurev.biochem.78.082907.145923
  • Odds, F. C. (2003). Synergy, antagonism, and what the chequerboard puts between them. The Journal of Antimicrobial Chemotherapy, 52(1), 1. doi:10.1093/jac/dkg301
  • Pagès, J.-M., & Amaral, L. (2009). Mechanisms of drug efflux and strategies to combat them: Challenging the efflux pump of Gram-negative bacteria. Biochimica Et Biophysica Acta, 1794(5), 826–833. doi:10.1016/j.bbapap.2008.12.011
  • Parkins, M. D., & Floto, R. A. (2015). Emerging bacterial pathogens and changing concepts of bacterial pathogenesis in cystic fibrosis. Journal of Cystic Fibrosis: Official Journal of the European Cystic Fibrosis Society, 14(3), 293–304. doi:10.1016/j.jcf.2015.03.012
  • Piddock, L. J. V. (2015). Teixobactin, the first of a new class of antibiotics discovered by iChip technology? The Journal of Antimicrobial Chemotherapy, 70(10), 2679–2680. doi:10.1093/jac/dkv175
  • Poole, K. (2001). Multidrug efflux pumps and antimicrobial resistance in Pseudomonas aeruginosa and related organisms. Journal of Molecular Microbiology and Biotechnology, 3(2), 255–264.
  • Renau, T. E., Léger, R., Flamme, E. M., Sangalang, J., She, M. W., Yen, R., … Nakayama, K. (1999). Inhibitors of efflux pumps in Pseudomonas aeruginosa potentiate the activity of the fluoroquinolone antibacterial levofloxacin. Journal of Medicinal Chemistry, 42(24), 4928–4931.10.1021/jm9904598
  • Roberts, L., & Simpson, S. (2008). Drug resistance. Deadly defiance. Introduction to special issue. Science, 321(5887), 355. doi:10.1126/science.321.5887.355
  • Ruggerone, P., Vargiu, A. V., Collu, F., Fischer, N., & Kandt, C. (2013). Molecular dynamics computer simulations of multidrug RND efflux pumps. Computational and Structural Biotechnology Journal, 5(6), 1–11. doi:10.5936/csbj.201302008
  • Ruppé, É., Woerther, P.-L., & Barbier, F. (2015). Mechanisms of antimicrobial resistance in Gram-negative bacilli. Annals of Intensive Care, 5(1), 1–15. doi:10.1186/s13613-015-0061-0
  • Sana, T. G., & Monack, D. M. (2016). Microbiology: The dark side of antibiotics. Nature, 534(6), 624–625. doi:10.1038/nature18449
  • Sanner, M. F. (1999). Python: A programming language for software integration and development. Journal of Molecular Graphics & Modelling, 17(1), 57–61.
  • Spellberg, B., & Gilbert, D. N. (2014). The future of antibiotics and resistance: A tribute to a career of leadership by John Bartlett. Clinical Infectious Diseases: An Official Publication of the Infectious Diseases Society of America, 59(Suppl 2), S71–S75. doi:10.1093/cid/ciu392
  • Stermitz, F. R., Lorenz, P., Tawara, J. N., Zenewicz, L. A., & Lewis, K. (2000). Synergy in a medicinal plant: Antimicrobial action of berberine potentiated by 5'-methoxyhydnocarpin, a multidrug pump inhibitor. Proceedings of the National Academy of Sciences of the United States of America, 97(4), 1433–1437. doi:10.1073/pnas.030540597
  • Streptomycin. (2008). Basic biology information. Tuberculosis, 88(2), 1652–1652. doi:10.1016/S1472-9792(08)70027-1
  • Tripathi, S., Kumar, A., Kumar, B. S., Negi, A. S., & Sharma, A. (2015). Structural investigations into the binding mode of novel neolignans Cmp10 and Cmp19 microtubule stabilizers by in silico molecular docking, molecular dynamics, and binding free energy calculations. Journal of Biomolecular Structure and Dynamics, 34(6), 1232–1240. doi:10.1080/07391102.2015.1074941
  • Tseng, J. T., Bryan, L. E., & Van den Elzen, H. M. (1972). Mechanisms and spectrum of streptomycin resistance in a natural population of Pseudomonas aeruginosa. Antimicrobial Agents and Chemotherapy, 2(3), 136–141.10.1128/AAC.2.3.136
  • Van Bambeke, F., Glupczynski, Y., Plésiat, P., Pechère, J. C., & Tulkens, P. M. (2003). Antibiotic efflux pumps in prokaryotic cells: Occurrence, impact on resistance and strategies for the future of antimicrobial therapy. The Journal of Antimicrobial Chemotherapy, 51(5), 1055–1065. doi:10.1093/jac/dkg224
  • van Westreenen, M., & Tiddens, H. A. W. M. (2010). New antimicrobial strategies in cystic fibrosis. Paediatric Drugs, 12(6), 343–352. doi:10.2165/11316240-000000000-00000
  • Viveiros, M., Rodrigues, L., Martins, M., Couto, I., Spengler, G., Martins, A., & Amaral, L. (2010). Evaluation of efflux activity of bacteria by a semi-automated fluorometric system. Methods in Molecular Biology, 642, 159–172. doi:10.1007/978-1-60327-279-7_12
  • Wang, Y., Chiu, J.-F., & He, Q.-Y. (2006). Proteomics approach to illustrate drug action mechanisms. Current Drug Discovery Technologies, 3(3), 199–209.10.2174/157016306780136763
  • Wang, Y., Venter, H., & Ma, S. (2015). Efflux pump inhibitors: A novel approach to combat efflux-mediated drug resistance in bacteria. Current Drug Targets,.
  • Wenkert, E., Cochran, D. W., Gottlieb, H. E., Edward, W. H., Filhoa, R. B., Matos, F. J. D.A., & Madruga, M. I. L. M. (1976). W-NMR spectroscopy of naturally occurring substances. XLV. iboga alkaloids. Helvetica Cimica Acta, 59, 2437–2442.10.1002/(ISSN)1522-2675
  • Wiethoelter, A. K., Beltrán-Alcrudo, D., Kock, R., & Mor, S. M. (2015). Global trends in infectious diseases at the wildlife-livestock interface. Proceedings of the National Academy of Sciences of the United States of America, 112(31), 9662–9667. doi:10.1073/pnas.1422741112

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.