225
Views
7
CrossRef citations to date
0
Altmetric
Research Article

Sequence fingerprints distinguish erroneous from correct predictions of intrinsically disordered protein regions

ORCID Icon, & ORCID Icon
Pages 4338-4351 | Received 20 Oct 2017, Accepted 03 Dec 2017, Published online: 27 Dec 2017

References

  • Banerjee, S., Chakraborty, S., & De, R. K. (2017). Deciphering the cause of evolutionary variance within intrinsically disordered regions in human proteins. Journal of Biomolecular Structure and Dynamics, 35, 233–249.10.1080/07391102.2016.1143877
  • Bellay, J., Han, S., Michaut, M., Kim, T., Costanzo, M., Andrews, B. J., … Kim, P. M. (2011). Bringing order to protein disorder through comparative genomics and genetic interactions. Genome Biology, 12, R14.10.1186/gb-2011-12-2-r14
  • Brown, C. J., Johnson, A. K., Dunker, A. K., & Daughdrill, G. W. (2011). Evolution and disorder. Current Opinion in Structural Biology, 21, 441–446.10.1016/j.sbi.2011.02.005
  • Brown, C. J., Takayama, S., Campen, A. M., Vise, P., Marshall, T. W., Oldfield, C. J., … Dunker, A. K. (2002). Evolutionary rate heterogeneity in proteins with long disordered regions. Journal of Molecular Evolution, 55, 104–110.10.1007/s00239-001-2309-6
  • Campen, A., Williams, R. M., Brown, C. J., Meng, J., Uversky, V. N., & Dunker, A. K. (2008). TOP-IDP-Scale: A new amino acid scale measuring propensity for intrinsic disorder. Protein & Peptide Letters, 15, 956–963.10.2174/092986608785849164
  • Campion, S. R., Ameen, A. S., Lai, L., King, J. M., & Munzenmaier, T. N. (2001). Dipeptide frequency/bias analysis identifies conserved sites of nonrandomness shared by cysteine-rich motifs. Proteins: Structure, Function, and Genetics, 44, 321–328.10.1002/(ISSN)1097-0134
  • Chen, J. W., Romero, P., Uversky, V. N., & Dunker, A. K. (2006). Conservation of intrinsic disorder in protein domains and families: I. A database of conserved predicted disordered regions. Journal of Proteome Research, 5, 879–887.10.1021/pr060048x
  • Coelho Ribeiro Mde, L., Espinosa, J., Islam, S., Martinez, O., Thanki, J. J., Mazariegos, S., … Uversky, V. N. (2013). Malleable ribonucleoprotein machine: Protein intrinsic disorder in the Saccharomyces cerevisiae spliceosome. PeerJ, 1, e2.10.7717/peerj.2
  • Di Domenico, T., Walsh, I., Martin, A. J., & Tosatto, S. C. (2012). MobiDB: A comprehensive database of intrinsic protein disorder annotations. Bioinformatics, 28, 2080–2081.10.1093/bioinformatics/bts327
  • Dosztányi, Z., Chen, J., Dunker, A. K., Simon, I., & Tompa, P. (2006). Disorder and sequence repeats in hub proteins and their implications for network evolution. Journal of Proteome Research, 5, 2985–2995.10.1021/pr060171o
  • Dosztanyi, Z., Csizmok, V., Tompa, P., & Simon, I. (2005). IUPred: Web server for the prediction of intrinsically unstructured regions of proteins based on estimated energy content. Bioinformatics, 21, 3433–3434.10.1093/bioinformatics/bti541
  • Dosztanyi, Z., Sandor, M., Tompa, P., & Simon, I. (2007). Prediction of protein disorder at the domain level. Current Protein & Peptide Science, 8, 161–171.10.2174/138920307780363406
  • Dunker, A. K., Lawson, J. D., Brown, C. J., Williams, R. M., Romero, P., Oh, J. S., & Oldfield, C. J. (2001). Intrinsically disordered protein. Journal of Molecular Graphics and Modelling, 19, 26–59.10.1016/S1093-3263(00)00138-8
  • Dunker, A. K., Obradovic, Z., Romero, P., Garner, E. C., & Brown, C. J. (2000). Intrinsic protein disorder in complete genomes. Genome Informatics, 161–171.
  • Dunker, A. K., & Oldfield, C. J. (2015). Back to the future: Nuclear magnetic resonance and bioinformatics studies on intrinsically disordered proteins. Advances in Experimental Medicine and Biology, 870, 1–34.
  • Dyson, H. J., & Wright, P. E. (2005). Intrinsically unstructured proteins and their functions. Nature Reviews Molecular Cell Biology, 6, 197–208.10.1038/nrm1589
  • Forman-Kay, J. D., & Mittag, T. (2013). From sequence and forces to structure, function, and evolution of intrinsically disordered proteins. Structure, 21, 1492–1499.10.1016/j.str.2013.08.001
  • Fraga, H., Graña-Montes, R., Illa, R., Covaleda, G., & Ventura, S. (2014). Association between foldability and aggregation propensity in small disulfide-rich proteins. Antioxidants & Redox Signaling, 21, 368–383.10.1089/ars.2013.5543
  • Frishman, D., & Argos, P. (1997). Seventy-five percent accuracy in protein secondary structure prediction. Proteins: Structure, Function, and Genetics, 27, 329–335.10.1002/(ISSN)1097-0134
  • Fukuchi, S., Amemiya, T., Sakamoto, S., Nobe, Y., Hosoda, K., Kado, Y., … Ota, M. (2014). IDEAL in 2014 illustrates interaction networks composed of intrinsically disordered proteins and their binding partners. Nucleic Acids Research, 42, D320–D325.10.1093/nar/gkt1010
  • Fukuchi, S., Homma, K., Minezaki, Y., & Nishikawa, K. (2006). Intrinsically disordered loops inserted into the structural domains of human proteins. Journal of Molecular Biology, 355, 845–857.10.1016/j.jmb.2005.10.037
  • Garnier, J., Gibrat, J. F., & Robson, B. (1996). GOR method for predicting protein secondary structure from amino acid sequence. Methods in Enzymology, 266, 540–553.10.1016/S0076-6879(96)66034-0
  • Guermeur, Y., Geourjon, C., Gallinari, P., & Deleage, G. (1999). Improved performance in protein secondary structure prediction by inhomogeneous score combination. Bioinformatics, 15, 413–421.10.1093/bioinformatics/15.5.413
  • Gunasekaran, K., Tsai, C. J., Kumar, S., Zanuy, D., & Nussinov, R. (2003). Extended disordered proteins: Targeting function with less scaffold. Trends in Biochemical Sciences, 28, 81–85.10.1016/S0968-0004(03)00003-3
  • Gupta, A., Deshpande, A., Amburi, J. K., Sabarinathan, R., Senthilkumar, R., & Sekar, K. (2009). CSSP (consensus secondary structure prediction): A web-based server for structural biologists. Journal of Applied Crystallography, 42, 336–338.10.1107/S0021889808043847
  • Harihar, B., & Selvaraj, S. (2009). Refinement of the long-range order parameter in predicting folding rates of two-state proteins. Biopolymers, 91, 928–935.10.1002/bip.v91:11
  • He, B., Wang, K., Liu, Y., Xue, B., Uversky, V. N., & Dunker, A. K. (2009). Predicting intrinsic disorder in proteins: An overview. Cell Research, 19, 929–949.10.1038/cr.2009.87
  • Ishida, T., & Kinoshita, K. (2007). PrDOS: Prediction of disordered protein regions from amino acid sequence. Nucleic Acids Research, 35, W460–W464.10.1093/nar/gkm363
  • Kabsch, W., & Sander, C. (1983). Dictionary of protein secondary structure: Pattern recognition of hydrogen-bonded and geometrical features. Biopolymers, 22, 2577–2637.10.1002/(ISSN)1097-0282
  • King, R. D., & Sternberg, M. J. (1996). Identification and application of the concepts important for accurate and reliable protein secondary structure prediction. Protein Science, 5, 2298–2310.10.1002/pro.v5:11
  • Korneta, I., & Bujnicki, J. M. (2012). Intrinsic disorder in the human spliceosomal proteome. PLoS Computational Biology, 8, e1002641.10.1371/journal.pcbi.1002641
  • Kosol, S., Contreras-Martos, S., Cedeño, C., & Tompa, P. (2013). Structural characterization of intrinsically disordered proteins by NMR spectroscopy. Molecules, 18, 10802–10828.10.3390/molecules180910802
  • Kurup, K., Dunker, A. K., & Krishnaswamy, S. (2013). Functional fragments of disorder in outer membrane beta barrel proteins. Intrinsically Disordered Proteins, 1, 45–55.
  • Lee, K. H., Zhang, P., Kim, H. J., Mitrea, D. M., Sarkar, M., Freibaum, B. D., … Taylor, J. P. (2016). C9orf72 dipeptide repeats impair the assembly, dynamics, and function of membrane-less organelles. Cell, 167, 774–788.e17.10.1016/j.cell.2016.10.002
  • Linding, R., Jensen, L. J., Diella, F., Bork, P., Gibson, T. J., & Russell, R. B. (2003). Protein disorder prediction: Implications for structural proteomics. Structure, 11, 1453–1459.10.1016/j.str.2003.10.002
  • Lobley, A., Swindells, M. B., Orengo, C. A., & Jones, D. T. (2007). Inferring function using patterns of native disorder in proteins. PLoS Computational Biology, 3, e162.10.1371/journal.pcbi.0030162
  • McGuffin, L. J., Bryson, K., & Jones, D. T. (2000). The PSIPRED protein structure prediction server. Bioinformatics, 16, 404–405.10.1093/bioinformatics/16.4.404
  • Mészáros, B., Dosztányi, Z., & Simon, I. (2012). Disordered binding regions and linear motifs – Bridging the gap between two models of molecular recognition. PLoS ONE, 7, e46829.10.1371/journal.pone.0046829
  • Minde, D. P., Dunker, A. K., & Lilley, K. S. (2017). Time, space and disorder in the expanding proteome universe. Proteomics, 17, 7, 1600399.
  • Monastyrskyy, B., Kryshtafovych, A., Moult, J., Tramontano, A., & Fidelis, K. (2014). Assessment of protein disorder region predictions in CASP10. Proteins: Structure, Function, and Bioinformatics, 82, 127–137.10.1002/prot.24391
  • Murzin, A. G., Brenner, S. E., Hubbard, T., & Chothia, C. (1995). SCOP: A structural classification of proteins database for the investigation of sequences and structures. Journal of Molecular Biology, 247, 536–540.
  • Netto, L. E. S., de Oliveira, M. A., Monteiro, G., Demasi, A. P. D., Cussiol, J. R. R., Discola, K. F., & Horta, B. B. (2007). Reactive cysteine in proteins: Protein folding, antioxidant defense, redox signalling and more. Comparative Biochemistry and Physiology, 146, 180–193.
  • Oates, M. E., Romero, P., Ishida, T., Ghalwash, M., Mizianty, M. J., Xue, B., & Gough, J. (2013). D2P2: Database of disordered protein predictions. Nucleic Acids Research, 41, D508–D516.
  • Obradovic, Z., Peng, K., Vucetic, S., Radivojac, P., Brown, C. J., & Dunker, A. K. (2003). Predicting intrinsic disorder from amino acid sequence. Proteins: Structure, Function, and Genetics, 53, 566–572.10.1002/(ISSN)1097-0134
  • Obradovic, Z., Peng, K., Vucetic, S., Radivojac, P., & Dunker, A. K. (2005). Exploiting heterogeneous sequence properties improves prediction of protein disorder. Proteins: Structure, Function, and Bioinformatics, 61, 176–182.10.1002/(ISSN)1097-0134
  • Oldfield, C. J., & Dunker, A. K. (2014). Intrinsically disordered proteins and intrinsically disordered protein regions. Annual Review of Biochemistry, 83, 553–584.10.1146/annurev-biochem-072711-164947
  • Peng, Z. L., & Kurgan, L. (2012). Comprehensive comparative assessment of in-silico predictors of disordered regions. Current Protein & Peptide Science, 13, 6–18.10.2174/138920312799277938
  • Peng, Z., Oldfield, C. J., Xue, B., Mizianty, M. J., Dunker, A. K., Kurgan, L., & Uversky, V. N. (2014). A creature with a hundred waggly tails: Intrinsically disordered proteins in the ribosome. Cellular and Molecular Life Sciences, 71, 1477–1504.10.1007/s00018-013-1446-6
  • Piovesan, D., Tabaro, F., Mičetić, I., Necci, M., Quaglia, F., Oldfield, C. J., … Tosatto, S. C. E. (2017). DisProt 7.0: A major update of the database of disordered proteins. Nucleic Acids Research, 45, D219–D227.10.1093/nar/gkw1056
  • Potenza, E., Domenico, T. D., Walsh, I., & Tosatto, S. C. (2015). MobiDB 2.0: An improved database of intrinsically disordered and mobile proteins. Nucleic Acids Research, 43, D315–D320.10.1093/nar/gku982
  • Radivojac, P., Iakoucheva, L. M., Oldfield, C. J., Obradovic, Z., Uversky, V. N., & Dunker, A. K. (2007). Intrinsic disorder and functional proteomics. Biophysical Journal, 92, 1439–1456.10.1529/biophysj.106.094045
  • Romero, P., Obradovic, Z., Kisinger, K., Villafranca, J. E., & Dunker, A. K. (1997). Identifying disordered regions in proteins from amino acid sequence. International Conference on Artificial Neural Networks, 1, 90–95.
  • Romero, P., Obradovic, Z., Li, X., Garner, E. C., Brown, C. J., & Dunker, A. K. (2001). Sequence complexity of disordered protein. Proteins: Structure, Function, and Genetics, 42, 38–48.10.1002/(ISSN)1097-0134
  • Rost, B., & Eyrich, V. A. (2001). EVA: Large-scale analysis of secondary structure prediction. Proteins: Structure, Function, and Genetics, 45, 192–199.10.1002/(ISSN)1097-0134
  • Saravanan, K. M., & Krishnaswamy, S. (2015). Analysis of dihedral angle preferences for alanine and glycine residues in alpha and beta transmembrane regions. Journal of Biomolecular Structure & Dynamics, 33, 5525–5562.
  • Saravanan, K. M., & Selvaraj, S. (2017). Dihedral angle preferences of amino acid residues forming various non-local interactions in proteins. Journal of Biological Physics, 43, 265–278.10.1007/s10867-017-9451-x
  • Schlessinger, A., Schaefer, C., Vicedo, E., Schmidberger, M., Punta, M., & Rost, B. (2011). Protein disorder – A breakthrough invention of evolution? Current Opinion in Structural Biology, 21, 412–418.10.1016/j.sbi.2011.03.014
  • Schmidt, H. B., & Görlich, D. (2016). Transport selectivity of nuclear pores, phase separation, and membraneless organelles. Trends in Biochemical Sciences, 41, 46–61.10.1016/j.tibs.2015.11.001
  • Shimizu, K., Hirose, S., & Noguchi, T. (2007). POODLE-S: Web application for predicting protein disorder by using physicochemical features and reduced amino acid set of a position-specific scoring matrix. Bioinformatics, 23, 2337–2338.10.1093/bioinformatics/btm330
  • Sickmeier, M., Hamilton, J. A., LeGall, T., Vacic, V., Cortese, M. S., Tantos, A., … Dunker, A. K. (2007). DisProt: The database of disordered proteins. Nucleic Acids Research, 35, D786–D793.10.1093/nar/gkl893
  • Simon, M., & Hancock, J. M. (2009). Tandem and cryptic amino acid repeats accumulate in disordered regions of proteins. Genome Biology, 10, R59.10.1186/gb-2009-10-6-r59
  • Singh, H., Chauhan, J. S., Gromiha, M. M., & Raghava, G. P. (2012). ccPDB: Compilation and creation of data sets from Protein Data Bank. Nucleic Acids Research, 40, D486–D489.10.1093/nar/gkr1150
  • Szalkowski, A. M., & Anisimova, M. (2011). Markov models of amino acid substitution to study proteins with intrinsically disordered regions. PLoS ONE, 6, e20488.10.1371/journal.pone.0020488
  • Tompa, P. (2002). Intrinsically unstructured proteins. Trends in Biochemical Sciences, 27(10), 527–533.10.1016/S0968-0004(02)02169-2
  • Tompa, P., Fuxreiter, M., Oldfield, C. J., Simon, I., Dunker, A. K., & Uversky, V. N. (2009). Close encounters of the third kind: Disordered domains and the interactions of proteins. BioEssays, 31, 328–335.10.1002/bies.v31:3
  • Toretsky, J. A., & Wright, P. E. (2014). Assemblages: Functional units formed by cellular phase separation. The Journal of Cell Biology, 206, 579–588.10.1083/jcb.201404124
  • Tóth-Petróczy, Á., Oldfield, C. J., Simon, I., Takagi, Y., Dunker, A. K., Uversky, V. N., & Fuxreiter, M. (2008). Malleable machines in transcription regulation: The mediator complex. PLoS Computational Biology, 4, e1000243.10.1371/journal.pcbi.1000243
  • Uversky, V. N. (2002). Natively unfolded proteins: A point where biology waits for physics. Protein Science, 11, 739–756.10.1110/ps.4210102
  • Uversky, V. N. (2013). The alphabet of intrinsic disorder: II. Various roles of glutamic acid in ordered and intrinsically disordered proteins. Intrinsically Disordered Proteins, 1, 18–40.
  • Uversky, V. N., Kuznetsova, I. M., Turoverov, K. K., & Zaslavsky, B. (2015). Intrinsically disordered proteins as crucial constituents of cellular aqueous two phase systems and coacervates. FEBS Letters, 589, 15–22.10.1016/j.febslet.2014.11.028
  • Vacic, V., Uversky, V. N., Dunker, A. K., & Lonardi, S. (2007). Composition Profiler: A tool for discovery and visualization of amino acid composition differences. BMC Bioinformatics, 8, 211.10.1186/1471-2105-8-211
  • Varadi, M., Kosol, S., Lebrun, P., Valentini, E., Blackledge, M., Dunker, A. K., & Felli, I. C. (2014). pE-DB: A database of structural ensembles of intrinsically disordered and of unfolded proteins. Nucleic Acids Research, 42, D326–D335.10.1093/nar/gkt960
  • Walsh, I., Martin, A. J., Di Domenico, T., & Tosatto, S. C. (2012). ESpritz: Accurate and fast prediction of protein disorder. Bioinformatics, 28, 503–509.10.1093/bioinformatics/btr682
  • Wang, G., & Dunbrack, R. L. (2003). PISCES: A protein sequence culling server. Bioinformatics, 19, 1589–1591.10.1093/bioinformatics/btg224
  • Ward, J. J., Sodhi, J. S., McGuffin, L. J., Buxton, B. F., & Jones, D. T. (2004). Prediction and functional analysis of native disorder in proteins from the three kingdoms of life. Journal of Molecular Biology, 337, 635–645.10.1016/j.jmb.2004.02.002
  • Weathers, E. A., Paulaitis, M. E., Woolf, T. B., & Hoh, J. H. (2004). Reduced amino acid alphabet is sufficient to accurately recognize intrinsically disordered protein. FEBS Letters, 576, 348–352.10.1016/j.febslet.2004.09.036
  • Williams, R. W., Xue, B., Uversky, V. N., & Dunker, A. K. (2013). Distribution and cluster analysis of predicted intrinsically disordered protein Pfam domains. Intrinsically Disordered Proteins, 1, e24848.
  • Wright, P. E., & Dyson, H. J. (1999). Intrinsically unstructured proteins: Re-assessing the protein structure-function paradigm. Journal of Molecular Biology, 293, 321–331.10.1006/jmbi.1999.3110
  • Wu, H., & Fuxreiter, M. (2016). The structure and dynamics of higher-order assemblies: Amyloids, signalosomes, and granules. Cell, 165, 1055–1066.10.1016/j.cell.2016.05.004
  • Xue, B., Dunbrack, R. L., Williams, R. W., Dunker, A. K., & Uversky, V. N. (2010). PONDR-FIT: A meta-predictor of intrinsically disordered amino acids. Biochimica et Biophysica Acta (BBA) – Proteins and Proteomics, 1804, 996–1010.10.1016/j.bbapap.2010.01.011
  • Xue, B., Dunker, A. K., & Uversky, V. N. (2012). Orderly order in protein intrinsic disorder distribution: Disorder in 3500 proteomes from viruses and the three domains of life. Journal of Biomolecular Structure and Dynamics, 30, 137–149.10.1080/07391102.2012.675145
  • Xue, B., Oldfield, C. J., Dunker, A. K., & Uversky, V. N. (2009). CDF it all: Consensus prediction of intrinsically disordered proteins based on various cumulative distribution functions. FEBS Letters, 583, 1469–1474.10.1016/j.febslet.2009.03.070
  • Xue, B., Romero, P. R., Noutsou, M., Maurice, M. M., Rüdiger, S. G., William, A. M., Jr., … Dunker, A. K. (2013). Stochastic machines as a colocalization mechanism for scaffold protein function. FEBS Letters, 587, 1587–1591.10.1016/j.febslet.2013.04.006
  • Yan, J., Dunker, A. K., Uversky, V. N., & Kurgan, L. (2016). Molecular recognition features (MoRFs) in three domains of life. Molecular BioSystems, 12, 697–710.10.1039/C5MB00640F
  • Yeon, J. H., Heinkel, F., Sung, M., Na, D., & Gsponer, J. (2016). Systems-wide identification of cis-regulatory elements in proteins. Cell Systems, 2, 89–100.10.1016/j.cels.2016.02.004

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.