262
Views
10
CrossRef citations to date
0
Altmetric
Research Article

In silico approaches to evaluate the molecular properties of organophosphate compounds to inhibit acetylcholinesterase activity in housefly

, , &
Pages 307-320 | Received 11 Oct 2017, Accepted 20 Dec 2017, Published online: 12 Feb 2018

References

  • Abou-Donia, M. B., Siracuse, B., Gupta, N., & Sobel Sokol, A. (2016). Sarin (GB, O-isopropyl methylphosphonofluoridate) neurotoxicity: Critical review. Critical Reviews in Toxicology, 46(10), 845–875. doi:10.1080/10408444.2016.1220916
  • Agrawal, V. K., Srivastava, S., & Khadikar, P. V. (2004). QSAR study on phosphoramidothioate (Ace) toxicities in housefly. Molecular Diversity, 8(4), 413–419. doi:10.1023/B:MODI.0000047520.95618.43
  • Balasubramanian, P. K., Balupuri, A., & Cho, S. J. (2016). Molecular modeling studies on series of Btk inhibitors using docking, structure-based 3D-QSAR and molecular dynamics simulation: A combined approach. Archives of Pharmacal Research, 39(3), 328–339. doi:10.1007/s12272-015-0698-0
  • Balasubramanian, P. K., Balupuri, A., Kang, H. Y., & Cho, S. J. (2017). Receptor-guided 3D-QSAR studies, molecular dynamics simulation and free energy calculations of Btk kinase inhibitors. BMC Systems Biology, 11(Suppl 2), 6. doi:10.1186/s12918-017-0385-5
  • Balasubramanian, P. K., Balupuri, A., Kothandan, G., & Cho, S. J. (2014). In silico study of 1-(4-Phenylpiperazin-1-yl)-2-(1H-pyrazol-1-yl) ethanones derivatives as CCR1 antagonist: Homology modeling, docking and 3D-QSAR approach. Bioorganic & Medicinal Chemistry Letters, 24(3), 928–933. doi:10.1016/j.bmcl.2013.12.065
  • Boublik, Y., Saint-Aguet, P., Lougarre, A., Arnaud, M., Villatte, F., Estrada-Mondaca, S., & Fournier, D. (2002). Acetylcholinesterase engineering for detection of insecticide residues. Protein Engineering, Design and Selection, 15(1), 43–50.10.1093/protein/15.1.43
  • Boudinot, E., Bernard, V., Camp, S., Taylor, P., Champagnat, J., Krejci, E., & Foutz, A. S. (2009). Influence of differential expression of acetylcholinesterase in brain and muscle on respiration. Respiratory Physiology & Neurobiology, 165(1), 40–48. doi:10.1016/j.resp.2008.10.003
  • Case, D. A., Betz, R. M., Botello-Smith, W., Cerutti, D. S., Cheatham, I. T. E, Darden, T. A., … Kollman, P. A. (2016). AMBER 16. San Francisco, CA: University of California.
  • Chuang, G. Y., Kozakov, D., Brenke, R., Comeau, S. R., & Vajda, S. (2008). DARS (Decoys As the Reference State) potentials for protein-protein docking. Biophysical Journal, 95(9), 4217–4227. doi:10.1529/biophysj.108.135814
  • Colovic, M. B., Krstic, D. Z., Lazarevic-Pasti, T. D., Bondzic, A. M., & Vasic, V. M. (2013). Acetylcholinesterase inhibitors: Pharmacology and toxicology. Current Neuropharmacology, 11(3), 315–335. doi:10.2174/1570159X11311030006
  • Darden, T., York, D., & Pedersen, L. (1993). Particle mesh Ewald - an N.Log(N) method for Ewald sums in large systems. The Journal of Chemical Physics, 98(12), 10089–10092. doi:10.1063/1.464397
  • Dixon, S. L., Smondyrev, A. M., Knoll, E. H., Rao, S. N., Shaw, D. E., & Friesner, R. A. (2006). PHASE: A new engine for pharmacophore perception, 3D QSAR model development, and 3D database screening: 1. Methodology and preliminary results. Journal of Computer-Aided Molecular Design, 20(10–11), 647–671. doi:10.1007/s10822-006-9087-6
  • Dvir, H., Silman, I., Harel, M., Rosenberry, T. L., & Sussman, J. L. (2010). Acetylcholinesterase: From 3D structure to function. Chemico-Biological Interactions, 187(1–3), 10–22. doi:10.1016/j.cbi.2010.01.042
  • Feller, S. E., Zhang, Y. H., Pastor, R. W., & Brooks, B. R. (1995). Constant pressure molecular dynamics simulation: The Langevin piston method. The Journal of Chemical Physics, 103(11), 4613–4621. doi:10.1063/1.470648
  • Fujita, T., & Winkler, D. A. (2016). Understanding the roles of the “Two QSARs”. Journal of Chemical Information and Modeling, 56(2), 269–274. doi:10.1021/acs.jcim.5b00229
  • Gandhe, B. R., Purnanand, P. R., Danikhel, R. K., Shinde, S. K., Srivastava, R. K., Batra, B. S., & Rao, K. M. (1990). Use of gas retention indices for quantitative structure activity relationship studies of dialkyl phenyl phosphates. Pesticide Science, 29, 379–385. doi:10.1002/ps.2780290402
  • Gorecki, L., Korabecny, J., Musilek, K., Nepovimova, E., Malinak, D., Kucera, T., … Kuca, K. (2017). Progress in acetylcholinesterase reactivators and in the treatment of organophosphorus intoxication: A patent review (2006–2016). Expert Opinion on Therapeutic Patents, 1–15. doi: 10.1080/13543776.2017.1338275
  • Halgren, T. A., Murphy, R. B., Friesner, R. A., Beard, H. S., Frye, L. L., Pollard, W. T., & Banks, J. L. (2004). Glide: A new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening. Journal of Medicinal Chemistry, 47(7), 1750–1759. doi:10.1021/jm030644s
  • Harel, M., Kryger, G., Rosenberry, T. L., Mallender, W. D., Lewis, T., Fletcher, R. J., & Sussman, J. L. (2000). Three-dimensional structures of Drosophila melanogaster acetylcholinesterase and of its complexes with two potent inhibitors. Protein Science, 9(6), 1063–1072. doi:10.1110/ps.9.6.1063
  • Hematpoor, A., Liew, S. Y., Chong, W. L., Azirun, M. S., Lee, V. S., & Awang, K. (2016). Inhibition and larvicidal activity of phenylpropanoids from piper sarmentosum on acetylcholinesterase against mosquito vectors and their binding mode of interaction. PLoS ONE, 11(5), e0155265. doi:10.1371/journal.pone.0155265
  • Hossain, T., Saha, A., & Mukherjee, A. (2017). Exploring molecular structural requirement for AChE inhibition through multi-chemometric and dynamics simulation analyses. Journal of Biomolecular Structure and Dynamics, 1–12. doi: 10.1080/07391102.2017.1320231
  • Kaur, S., Singh, S., Chahal, K. S., & Prakash, A. (2014). Potential pharmacological strategies for the improved treatment of organophosphate-induced neurotoxicity. Canadian Journal of Physiology and Pharmacology, 92(11), 893–911. doi:10.1139/cjpp-2014-0113
  • Larkin, M. A., Blackshields, G., Brown, N. P., Chenna, R., McGettigan, P. A., McWilliam, H., … Higgins, D. G. (2007). Clustal W and Clustal X version 2.0. Bioinformatics, 23(21), 2947–2948. doi: 10.1093/bioinformatics/btm404
  • Loving, K., Salam, N. K., & Sherman, W. (2009). Energetic analysis of fragment docking and application to structure-based pharmacophore hypothesis generation. Journal of Computer-Aided Molecular Design, 23(8), 541–554. doi:10.1007/s10822-009-9268-1
  • Marimuthu, P., & Singaravelu, K. (2017). Deciphering the crucial residues involved in heterodimerization of bak peptide and anti-apoptotic proteins for apoptosis. Journal of Biomolecular Structure and Dynamics, 1–35. doi: 10.1080/07391102.2017.1331863
  • Marimuthu, P., Singaravelu, K., & Namasivayam, V. (2017). Probing the binding mechanism of mercaptoguanine derivatives as inhibitors of HPPK by docking and molecular dynamics simulations. Journal of Biomolecular Structure and Dynamics, 35(16), 3507–3521. doi:10.1080/07391102.2016.1260496
  • Niu, B., Lu, W. C., Yang, S. S., Cai, Y. D., & LI, G. Z. (2007). Support vector machine for SAR/QSAR of phenethyl-amines. Acta Pharmacologica Sinica, 28(7), 1075–1086. doi:10.1111/j.1745-7254.2007.00573.x
  • Phillips, J. C., Braun, R., Wang, W., Gumbart, J., Tajkhorshid, E., Villa, E., … Schulten, K. (2005). Scalable molecular dynamics with NAMD. Journal of Computational Chemistry, 26(16), 1781–1802. doi:10.1002/jcc.20289
  • Raies, A. B., & Bajic, V. B. (2016). In silico toxicology: Computational methods for the prediction of chemical toxicity. Wiley Interdisciplinary Reviews: Computational Molecular Science, 6(2), 147–172. doi:10.1002/wcms.1240
  • Ryckaer, J., Ciccotti, G., & Berendsen, H. J. (1977). Numerical integration of the cartesian equations of motion of a system with constraints: Molecular dynamics of n-alkanes. Journal of Computational Physics, 23(3), 327–341. doi:10.1016/0021-9991(77)90098-5
  • Salam, N. K., Nuti, R., & Sherman, W. (2009). Novel method for generating structure-based pharmacophores using energetic analysis. Journal of Chemical Information and Modeling, 49(10), 2356–2368. doi:10.1021/ci900212v
  • Sastry, G. M., Dixon, S. L., & Sherman, W. (2011). Rapid shape-based ligand alignment and virtual screening method based on atom/feature-pair similarities and volume overlap scoring. Journal of Chemical Information and Modeling, 51(10), 2455–2466. doi:10.1021/ci2002704
  • Sastry, G. M., Adzhigirey, M., Day, T., Annabhimoju, R., & Sherman, W. (2013). Protein and ligand preparation: Parameters, protocols, and influence on virtual screening enrichments. Journal of Computer-Aided Molecular Design, 27(3), 221–234. doi:10.1007/s10822-013-9644-8
  • Schlick, T., Skeel, R. D., Brunger, A. T., Kale, L. V., Board, J. A., Hermans, J., & Schulten, K. (1999). Algorithmic challenges in computational molecular biophysics. Journal of Computational Physics, 151(1), 9–48. doi:10.1006/Jcph.1998.6182
  • Seal, A., Passi, A., Jaleel, U. A., Open Source Drug Discovery Consortium, & Wild, D. J. (2012). In-silico predictive mutagenicity model generation using supervised learning approaches. Journal of Cheminformatics, 4(1), 10. doi:10.1186/1758-2946-4-10
  • Senthilkumar, R., Marimuthu, P., Paul, P., Manojkumar, Y., Arunachalam, S., Eriksson, J. E., & Johnson, M. S. (2016). Plasma protein binding of anisomelic acid: Spectroscopy and molecular dynamic simulations. Journal of Chemical Information and Modeling, 56(12), 2401–2412. doi:10.1021/acs.jcim.6b00445
  • Sharifi, M., Ghadamyari, M., Gholivand, K., Valmoozi, A. A., & Sajedi, R. H. (2017). Characterization of acetylcholinesterase from elm left beetle, Xanthogaleruca luteola and QSAR of temephos derivatives against its activity. Pesticide Biochemistry and Physiology, 136, 12–22. doi:10.1016/j.pestbp.2016.08.010
  • Shen, M. Y., & Sali, A. (2006). Statistical potential for assessment and prediction of protein structures. Protein Science, 15(11), 2507–2524. doi:10.1110/ps.062416606
  • Sherman, W., Beard, H. S., & Farid, R. (2006). Use of an induced fit receptor structure in virtual screening. Chemical Biology & Drug Design, 67(1), 83–84. doi:10.1111/j.1747-0285.2005.00327.x
  • Shivakumar, D., Williams, J., Wu, Y., Damm, W., Shelley, J., & Sherman, W. (2010). Prediction of absolute solvation free energies using molecular dynamics free energy perturbation and the OPLS force field. Journal of Chemical Theory and Computation, 6(5), 1509–1519. doi:10.1021/ct900587b
  • Su, B. H., Tu, Y. S., Esposito, E. X., & Tseng, Y. J. (2012). Predictive toxicology modeling: Protocols for exploring hERG classification and tetrahymena pyriformis end point predictions. Journal of Chemical Information and Modeling, 52(6), 1660–1673. doi:10.1021/ci300060b
  • Voorhees, J. R., Rohlman, D. S., Lein, P. J., & Pieper, A. A. (2016). Neurotoxicity in preclinical models of occupational exposure to organophosphorus compounds. Frontiers in Neuroscience, 10, 590. doi:10.3389/fnins.2016.00590
  • Wang, J., Wolf, R. M., Caldwell, J. W., Kollman, P. A., & Case, D. A. (2004). Development and testing of a general amber force field. Journal of Computational Chemistry, 25(9), 1157–1174. doi:10.1002/jcc.20035
  • Watts, K. S., Dalal, P., Murphy, R. B., Sherman, W., Friesner, R. A., & Shelley, J. C. (2010). ConfGen: A conformational search method for efficient generation of bioactive conformers. Journal of Chemical Information and Modeling, 50(4), 534–546. doi:10.1021/ci100015j
  • Webb, B., & Sali, A. (2016). Comparative protein structure modeling using MODELLER. Current Protocols in Bioinformatics, 54, 5 6 1–5 6 37. doi: 10.1002/cpbi.3

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.