326
Views
5
CrossRef citations to date
0
Altmetric
Research Article

Classical molecular dynamics simulation of seryl tRNA synthetase and threonyl tRNA synthetase bound with tRNA and aminoacyl adenylate

&
Pages 336-358 | Received 20 Sep 2017, Accepted 03 Jan 2018, Published online: 23 Jan 2018

References

  • Aono, M., & Ariga, K. (2016). The way to nanoarchitectonics and the way of nanoarchitectonics. Advance Material, 28, 989–992.10.1002/adma.201502868
  • Asahara, H., Himeno, H., & Shimizu, M. (1991). A recognition model of tRNASer by seryl tRNA synthetase in E. coli. Chemistry Letters, 20, 363–366.10.1246/cl.1991.363
  • Bilokapic, S., Maier, T., Ahel, D., Gruic-Sovulj, I., Söll, D., … Ban, N. (2006). Structure of the unusal seryl- tRNA synthetase reveals a distinct zinc-depandent mode of substrate recognition. EMBO Journal, 25, 2498–2509.10.1038/sj.emboj.7601129
  • Biou, V., Yaremchuk, A., Tukalo, M., & Cusack, S. (1994). The 2.9 Å crystal structure of T. thermophilus seryl-tRNA synthetase complexed with tRNAser. Science, 263, 1404–1410.10.1126/science.8128220
  • Burke, B., Yang, F., Chen, F., Stehlin, C., Chan, B., & Musier-Forsyth, K. (2000). Evolutionary coadaptation of the motif 2-acceptor stem interaction in the class II prolyl-tRNA synthetase system. Biochemistry, 39, 15540–15547.10.1021/bi001835p
  • Bushnell, E. A. C., Huang, W., Llano, J., & Gauld, J. W. (2012). Molecular dynamics investigation into substrate binding and identity of the catalytic base in the mechanism of threonyl-tRNA synthetase. Journal of Physical Chemistry B, 116, 5205–5212.10.1021/jp302556e
  • Carter, C. W., Jr (1993). Cognition, mechanism, and evolutionary relationships in aminoacyl-tRNA synthetases. Annual Reviews in Biochemistry, 62, 715–748.10.1146/annurev.bi.62.070193.003435
  • Case, D. A., Darden, T. A., Cheatham, T. E., III, Simmerling, C. L., Wang, J., … Kollman, P. A. (2010). AMBER11. San Francisco: University of California.
  • Cavarelli, J., Eriani, G., Rees, B., Ruff, M., Boeglin, M., Mitschler, A., … Moras, D. (1994). The active site of yeast aspartyl-tRNA synthetase: Structural and functional aspects of the aminoacylation reaction. EMBO Journal, 13, 327–337.
  • Cusack, S., Yaremchuk, A., & Tukalo, M. (1996). The crystal structure of the ternary complex of T.thermophilus seryl-tRNA synthetase with tRNASer and a seryl-adenylate analogue reveals a conformational switch in the active site. EMBO Journal, 15, 2834–2842.
  • Dock-Bregeon, A.-C., Sankaranarayanan, R., Romby, P., Caillet, J., Springer, M., Rees, B., … Moras, D. (2000). Transfer RNA–mediated editing in threonyl-tRNA synthetase: The class II solution to the double discrimination problem. Cell, 103, 877–844.10.1016/S0092-8674(00)00191-4
  • Dutta Banik, S., & Nandi, N. (2012a). Architectonics of active sites: Life processes at nanodimensions. In Katsuhiko Ariga (Ed.), Manipulation of nanoscale material: An introduction to nanoarchitectonics (pp. 213–241). London: Royal Society of Chemistry.10.1039/1757-7144
  • Dutta Banik, S., & Nandi, N. (2012b). Mechanism of the activation step of the aminoacylation reaction: A significant difference between class I and class II synthetases. Journal of Biomolecular Structure and Dynamics, 30, 701–715.10.1080/07391102.2012.689701
  • Dutta, S., Kundu, S., Saha, A., & Nandi, N. (2017). Dynamics of the active site loops in catalyzing aminoacylation reaction in seryl and histidyl tRNA synthetases. Journal of Biomolecular Structure and Dynamics,1–15. doi:10.1080/07391102.2017.1301272
  • Dutta, S., & Nandi, N. (2015). Dynamics of the active sites of dimeric seryl tRNA synthetase from Methanopyrus kandleri. Journal of Physical Chemistry B, 119, 10832–10848.10.1021/jp511585w
  • Eiler, S., Dock-Bregeon, A. C., Moulinier, L., Thierry, J. C., & Moras, D. (1999). Synthesis of aspartyl-tRNAAsp in Escherichia coli – A snapshot of the second step. EMBO Journal, 18, 6532–6541.10.1093/emboj/18.22.6532
  • Francklyn, C. S., First, E. A., Perona, J. J., & Hou, Y.-M. (2008). Methods for kinetic and thermodynamic analysis of aminoacyl-tRNA synthetases. Methods, 44, 100–118.10.1016/j.ymeth.2007.09.007
  • Guth, E. C., & Francklyn, C. S. (2007). Kinetic discrimination of tRNA identity by the conserved motif 2 loop of a class II aminoacyl-tRNA synthetase. Molecular Cell, 25, 531–542.10.1016/j.molcel.2007.01.015
  • Huang, W. J., Bushnell, E. A. C., Francklyn, C. S., & Gauld, J. W. (2011). The α-amino group of the threonine substrate as the general base during trna aminoacylation: A new version of substrate-assisted catalysis predicted by hybrid DFT. Journal of Physical Chemistry A, 115, 13050–13060.10.1021/jp205037a
  • Humphrey, W., Dalke, A., & Schulten, K. (1996). VMD: Visual molecular dynamics. Journal of Molecular Graphics, 14, 33–38.10.1016/0263-7855(96)00018-5
  • Ibba, M., & Söll, D. (2000). Aminoacyl-tRNA synthesis. Annual Reviews Biochemistry, 69, 617–650.10.1146/annurev.biochem.69.1.617
  • Itoh, Y., Sekine, S., Suetsugu, S., & Yokoyama, S. (2013). Tertiary structure of bacterial selenocysteine tRNA. Nucleic Acid Research, 41, 6729–6738.10.1093/nar/gkt321
  • Kästner, J. (2011). Umbrella sampling. WIREs Computational Molecular Science, 1, 932–942.10.1002/wcms.66
  • Komiyama, M., Yoshimoto, K., Sisido, M., & Ariga, K. (2017). Chemistry can make strict and fuzzy controls for bio-systems: DNA nanoarchitectonics and cell-macromolecular nanoarchitectonics. Bulletin of the Chemical Society of Japan, 90, 967–1004.10.1246/bcsj.20170156
  • Kumar, S., Rosenberg, J. M., Bouzida, D., Swendsen, R. H., & Kollman, P. A. (1992). THE weighted histogram analysis method for free-energy calculations on biomolecules. I. The method. Journal of Computational Chemistry, 13, 1011–1021.10.1002/(ISSN)1096-987X
  • Lenhard, B., Filipic, S., Landeka, I., Skrtic, I., Söll, D., & Weygand-Durasevic, I. (1997). Defining the active site of yeast seryl-tRNA synthetase: Mutations in motif 2 loop residues affect tRNA-dependent amino acid recognition. Journal of Biological Chemistry, 272, 1136–1141.10.1074/jbc.272.2.1136
  • Lu, X.-J., & Olson, W. K. (2003). 3DNA: A software package for the analysis, rebuilding and visualization of three-dimensional nucleic acid structures. Nucleic Acids Research, 31, 5108–5121.10.1093/nar/gkg680
  • Merz, K. M., Jr (1991). CO2 binding to human carbonic anhydrase II. Journal of American Chemical Society, 113, 406–411.10.1021/ja00002a004
  • Minajigi, A., & Francklyn, C. S. (2008). RNA-assisted catalysis in a protein enzyme: The 2/-hydroxyl of tRNAThr A76 promotes aminoacylation by threonyl-tRNA synthetase. Proceedings of National Academy of Science USA, 105, 17748–17753.10.1073/pnas.0804247105
  • Moor, N., Kotik-Kogan, O., Tworowski, D., Sukhanova, M., & Safro, M. (2006). The crystal structure of the ternary complex of phenylalanyl-tRNA synthetase with tRNAPhe and a phenylalanyl-adenylate analogue reveals a conformational switch of the CCA end. Biochemistry, 45, 10572–10583.10.1021/bi060491 l
  • Moulinier, L., Eiler, S., Eriani, G., Gangloff, J., Thierry, J. C., Gabriel, K., … Moras, D. (2001). The structure of an AspRS-tRNAAsp complex reveals a tRNA-depandent control mechanism. EMBO Journal, 20, 5290–5231.10.1093/emboj/20.18.5290
  • Nandi, N., Bhattacharyya, K., & Bagchi, B. (2000). Dielectric relaxation and solvation dynamics of water in complex chemical and biological systems. Chemical Review, 100, 2013–2045.10.1021/cr980127v
  • Pandian, G. N., & Sugiyama, H. (2016). Nature-inspired design of smart biomaterials using the chemical biology of nucleic acids. Bulletin of the Chemical Society of Japan, 89, 843–868.10.1246/bcsj.20160062
  • Perona, J. J., & Gruic-Sovulj, I. (2014). Synthetic and editing mechanisms of aminoacyl-tRNA synthetases. Topics in Current Chemistry, 344, 1–41.
  • Perona, J. J., & Hadd, A. (2012). Structural diversity and protein engineering of the aminoacyl-tRNA synthetases. Biochemistry, 51, 8705–8729.10.1021/bi301180x
  • Potts, R. O., Wang, C. -C., Fritzinger, D. C., Ford, N. C. Jr, & Fournier, M. J. (1979). Effect of aminoaylation and solution conditions on the structure of tRNA. In P. R. Schimmel, D. Soll, & J. N. Abelson (Eds.), Transfer RNA: Structure, Properties, and recognition (pp. 207–220). Cold Spring Harbor, NYCold Spring Harbor Laboratory Press. doi: 10.1101/087969128.9A.i
  • Sankaranarayanan, R., Dock-Bregeon, A.-C., Rees, B., Bovee, M., Caillet, J., Romby, P., … Moras, D. (2000). Zinc ion mediated aminoacid discrimination by threonyl-tRNA synthetase. Nature Structural Biology, 7, 461–465.
  • Sankaranarayanan, R., Dock-Bregeon, A. C., Romby, P., Caillet, J., Springer, M., Rees, B., … Moras, D. (1999). The structure of threonyl-tRNA synthetase-tRNAThr complex enlightens its repressor activity and reveals an essential zinc ion in the active site. Cell, 97, 371–381.10.1016/S0092-8674(00)80746-1
  • Schimmel, P. (1987). Aminoacyl tRNA synthetases: General scheme of structure-function relationships in the polypeptides and recognition of transfer RNAs. Annual Reviews in Biochemistry, 56, 125–158.10.1146/annurev.bi.56.070187.001013
  • Schimmel, P. R., & Sӧll, D. (1979). Aminoacyl-tRNA synthetases: General features and recognition of transfer RNAs. Annual Reviews in Biochemistry, 48, 601–648.10.1146/annurev.bi.48.070179.003125
  • Sgourakis, N. G., Day, R., McCallum, S. A., & Garcia, A. E. (2008). Pressure effects on the ensemble dynamics of ubiquitin inspected with molecular dynamics simulations and isotropic reorientational eigenmode dynamics. Biophysical Journal, 95, 3943–3955.10.1529/biophysj.108.133702
  • Showalter, S. A., & Brüschweiler, R. (2007). Validation of molecular dynamics simulations of biomolecules using NMR spin relaxation as benchmarks: Application to the AMBER99SB force field. Journal of Chemical Theory and Computation, 3, 961–975.10.1021/ct7000045
  • Soma, A., & Himeno, H. (1998). Cross-species aminoacylation of tRNA with a long variable arm between Escherichia coli and Saccharomyces cerevisiae. Nucleic Acids Research, 26, 4374–4381.10.1093/nar/26.19.4374
  • Souaille, M., & Roux, B. (2001). Extension to the weighted histogram analysis method: Combining umbrella sampling with free energy calculations. Computer Physics Communications, 135, 40–57.10.1016/S0010-4655(00)00215-0
  • Torres-Larios, A., Sankaranarayanan, R., Rees, B., Dock-Bregeon, A. C., & Moras, D. (2003). Conformational movements and cooperativity upon amino acid, atp and trna binding in threonyl-tRNA synthetase. Journal of Molecular Biology, 331, 201–211.10.1016/S0022-2836(03)00719-8
  • Trott, O., & Olson, A. J. (2010). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31, 455–461.
  • Vincent, C., Borel, F., Willison, J. C., Leberman, R., & Härtlein, M. (1995). Seryl-tRNA synthetase from Escherichia coli: Functional evidence for cross-dimer tRNA binding during aminoacylation. Nucleic Acids Research, 23, 1113–1118.10.1093/nar/23.7.1113
  • Wang, J., Wolf, R. M., Caldwell, J. W., Kollman, P. A., & Case, D. A. (2004). Development and testing of a general amber force field. Journal of Computational Chemistry, 25, 1157–1173.10.1002/(ISSN)1096-987X

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.