395
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Identification of the hot spot residues for pyridine derivative inhibitor CCT251455 and ATP substrate binding on monopolar spindle 1 (MPS1) kinase by molecular dynamic simulation

, , , , , , , , & show all
Pages 611-622 | Received 21 Jun 2017, Accepted 18 Jan 2018, Published online: 08 Mar 2018

References

  • Anandakrishnan, R., Aguilar, B., & Onufriev, A. V. (2012). H++3.0: Automating pK prediction and the preparation of biomolecular structures for atomistic molecular modeling and simulations. Nucleic Acids Research, 40(W1), W537–W541. doi:10.1093/nar/gks375
  • Bayly, C. I., Cieplak, P., Cornell, W. D., & Kollman, P. A. (1993). A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges: The RESP model. The Journal of Physical Chemistry, 97(40), 10269–10280. doi:10.1021/J100142a004
  • Bennett, B. L., Sasaki, D. T., Murray, B. W., O’Leary, E. C., Sakata, S. T., Xu, W. M., & Anderson, D. W. (2001). SP600125, an anthrapyrazolone inhibitor of Jun N-terminal kinase. Proceedings of the National Academy of Sciences, 98(24), 13681–13686. doi:10.1073/pnas.251194298
  • Berman, H., Henrick, K., Nakamura, H., & Markley, J. L. (2007). The worldwide Protein Data Bank (wwPDB): Ensuring a single, uniform archive of PDB data. Nucleic Acids Research, 35, D301–D303. doi:10.1093/nar/gkl971
  • Bursavich, M. G., Dastrup, D., Shenderovich, M., Yager, K. M., Cimbora, D. M., Williams, B., & Kumar, D. V. (2013). Novel Mps1 kinase inhibitors: From purine to pyrrolopyrimidine and quinazoline leads. Bioorganic & Medicinal Chemistry Letters, 23(24), 6829–6833. doi:10.1016/j.bmcl.2013.10.008
  • Chitrala, K. N., & Yeguvapalli, S. (2014). Computational screening and molecular dynamic simulation of breast cancer associated deleterious non-synonymous single nucleotide polymorphisms in TP53 gene. PLoS ONE, 9(8), ARTN e104242. doi:10.1371/journal.pone.0104242
  • Choi, M., Min, Y. H., Pyo, J., Lee, C. W., Jang, C. Y., & Kim, J. E. (2017). TC Mps1 12, a novel Mps1 inhibitor, suppresses the growth of hepatocellular carcinoma cells via the accumulation of chromosomal instability. British Journal of Pharmacology, 174(12), 1810–1825. doi:10.1111/bph.13782
  • Chu, M. L. H., Chavas, L. M. G., Douglas, K. T., Eyers, P. A., & Tabernero, L. (2008). Crystal structure of the catalytic domain of the mitotic checkpoint kinase Mps1 in complex with SP600125. Journal of Biological Chemistry, 283(31), 21495–21500. doi:10.1074/jbc.M803026200
  • Chu, M. L. H., Lang, Z., Chavas, L. M. G., Neres, J., Fedorova, O. S., Tabernero, L., & Eyers, P. A. (2010). Biophysical and X-ray crystallographic analysis of Mps1 kinase inhibitor complexes. Biochemistry, 49(8), 1689–1701. doi:10.1021/bi901970c
  • de Oliveira, E. A. G., Romeiro, N. C., Ribeiro, E. D., Santa-Catarina, C., Oliveira, A. E. A., Silveira, V., & Cruz, M. A. L. (2012). Structural and functional characterization of the protein kinase Mps1 in arabidopsis thaliana. Plos ONE, 7(9), ARTN e45707. doi:10.1371/journal.pone.0045707
  • Dominguez-Brauer, C., Thu, K. L., Mason, J. M., Blaser, H., Bray, M. R., & Mak, T. W. (2015). Targeting mitosis in cancer: Emerging strategies. Molecular Cell, 60(4), 524–536. doi:10.1016/j.molcel.2015.11.006
  • Dorer, R. K., Zhong, S., Tallarico, J. A., Wong, W. H., Mitchison, T. J., & Murray, A. W. (2005). A small-molecule inhibitor of Mps1 blocks the spindle-checkpoint response to a lack of tension on mitotic chromosomes. Current Biology, 15(11), 1070–1076. doi:10.1016/j.cub.2005.05.020
  • Dou, Z., Liu, X., Wang, W. W., Zhu, T. G., Wang, X. H., Xu, L. L., & Yao, X. B. (2015). Dynamic localization of Mps1 kinase to kinetochores is essential for accurate spindle microtubule attachment. Proceedings of the National Academy of Sciences of the United States of America, 112(33), E4546–E4555. doi:10.1073/pnas.1508791112
  • Emtage, A. L., Mistry, S. N., Fischer, P. M., Kellam, B., & Laughton, C. A. (2017). GPCRs through the keyhole: The role of protein flexibility in ligand binding to β-adrenoceptors. Journal of Biomolecular Structure and Dynamics, 35(12), 2604–2619. doi:10.1080/07391102.2016.1226197
  • Faisal, A., Mak, G. W. Y., Gurden, M. D., Xavier, C. P. R., Anderhub, S. J., Innocenti, P., & Linardopoulos, S. (2017). Characterisation of CCT271850, a selective, oral and potent MPS1 inhibitor, used to directly measure in vivo MPS1 inhibition vs. therapeutic efficacy. British Journal of Cancer, 116(9), 1166–1176. doi:10.1038/bjc.2017.75
  • Hu, X. P., Hu, S., Wang, J. Z., Dong, Y. W., Zhang, L., & Dong, Y. H. (2017). Steered molecular dynamics for studying ligand unbinding of ecdysone receptor. Journal of Biomolecular Structure and Dynamics, 1–10. doi:10.1080/07391102.2017.1401002
  • Huggins, D. J., McKenzie, G. J., Robinson, D. D., Narvaez, A. J., Hardwick, B., Roberts-Thomson, M., & Payne, M. C. (2010). Computational analysis of phosphopeptide binding to the polo-box domain of the mitotic kinase PLK1 using molecular dynamics simulation. Plos Computational Biology, 6(8), ARTN e1000880. doi:10.1371/journal.pcbi.1000880
  • Humphrey, W., Dalke, A., & Schulten, K. (1996). VMD: Visual molecular dynamics. Journal of Molecular Graphics, 14(1), 33–38. doi:10.1016/0263-7855(96)00018-5
  • Hunter, N. H., Bakula, B. C., & Bruce, C. D. (2017). Molecular dynamics simulations of apo and holo forms of fatty acid binding protein 5 and cellular retinoic acid binding protein II reveal highly mobile protein, retinoic acid ligand, and water molecules. Journal of Biomolecular Structure and Dynamics,1–15. doi:10.1080/07391102.2017.1337591
  • Ibrahim, B. (2015). Toward a systems-level view of mitotic checkpoints. Progress in Biophysics & Molecular Biology, 117(2–3), 217–224. doi:10.1016/j.pbiomolbio.2015.02.005
  • Iwase, T., Tanaka, M., Suzuki, M., Naito, Y., Sugimura, H., & Kino, I. (1993). Identification of protein–tyrosine kinase genes preferentially expressed in embryo stomach and gastric-cancer. Biochemical and Biophysical Research Communications, 194(2), 698–705. doi:10.1006/bbrc.1993.1878
  • Janssen, A., Kops, G. J. P. L., & Medema, R. H. (2009). Elevating the frequency of chromosome mis-segregation as a strategy to kill tumor cells. Proceedings of the National Academy of Sciences of the United States of America, 106(45), 19108–19113. doi:10.1073/pnas.0904343106
  • Jemaa, M., Manic, G., Lledo, G., Lissa, D., Reynes, C., Morin, N., & Abrieu, A. (2016). Whole-genome duplication increases tumor cell sensitivity to MPS1 inhibition. Oncotarget, 7(1), 885–901. doi:10.18632/oncotarget.6432
  • Katragadda, M., Magotti, P., Sfyroera, G., & Lambris, J. D. (2006). Hydrophobic effect and hydrogen bonds account for the improved activity of a complement inhibitor, compstatin. Journal of Medicinal Chemistry, 49(15), 4616–4622. doi:10.1021/jm0603419
  • Kollu, S., Abou-Khalil, R., Shen, C., & Brack, A. S. (2015). The spindle assembly checkpoint safeguards genomic integrity of skeletal muscle satellite cells. Stem Cell Reports, 4(6), 1061–1074. doi:10.1016/j.stemcr.2015.04.006
  • Kops, G. J. P. L., Weaver, B. A. A., & Cleveland, D. W. (2005). On the road to cancer: Aneuploidy and the mitotic checkpoint. Nature Reviews Cancer, 5(10), 773–785. doi:10.1038/nrc1714
  • Kusakabe, K., Ide, N., Daigo, Y., Tachibana, Y., Itoh, T., Yamamoto, T., & Nakamura, Y. (2013). Indazole-based potent and cell-active Mps1 kinase inhibitors: Rational design from pan–kinase inhibitor anthrapyrazolone (SP600125). Journal of Medicinal Chemistry, 56(11), 4343–4356. doi:10.1021/jm4000215
  • Kusakabe, K., Ide, N., Daigo, Y., Itoh, T., Yamamoto, T., Hashizume, H., & Nakamura, Y. (2015). Discovery of imidazo[1,2-b]pyridazine derivatives: Selective and orally available Mps1 (TTK) kinase inhibitors exhibiting remarkable antiproliferative activity. Journal of Medicinal Chemistry, 58(4), 1760–1775. doi:10.1021/jm501599u
  • Kwiatkowski, N., Jelluma, N., Filippakopoulos, P., Soundararajan, M., Manak, M. S., Kwon, M., & Gray, N. S. (2010). Small-molecule kinase inhibitors provide insight into Mps1 cell cycle function. Nature Chemical Biology, 6(5), 359–368. doi:10.1038/nchembio.345
  • Li, X. L., Zhou, L., Tian, Y. H., & Zhou, S. W. (2015). Identification of potential Mps1 inhibitors through multiple pharmacophore-based virtual screening and molecular docking. Letters in Drug Design & Discovery, 12(7), 558–573.10.2174/1570180812999150210142710
  • Ling, Y. G., Zhang, X. J., Bai, Y. Y., Li, P., Wei, C. W., Song, T., & Xu, Q. B. (2014). Overexpression of Mps1 in colon cancer cells attenuates the spindle assembly checkpoint and increases aneuploidy. Biochemical and Biophysical Research Communications, 450(4), 1690–1695. doi:10.1016/j.bbrc.2014.07.071
  • Liu, Y., Lang, Y. H., Patel, N. K., Ng, G., Laufer, R., Li, S. W., & Pauls, H. W. (2015). The discovery of orally bioavailable tyrosine threonine kinase (TTK) inhibitors: 3-(4-(heterocyclyl)phenyl)-1H-indazole-5-carboxamides as anticancer agents. Journal of Medicinal Chemistry, 58(8), 3366–3392. doi:10.1021/jm501740a
  • Maia, A. R. R., de Man, J., Boon, U., Janssen, A., Song, J. Y., Omerzu, M., & Medema, R. H. (2015). Inhibition of the spindle assembly checkpoint kinase TTK enhances the efficacy of docetaxel in a triple-negative breast cancer model. Annals of Oncology, 26(10), 2180–2192. doi:10.1093/annonc/mdv293
  • Naud, S., Westwood, I. M., Faisal, A., Sheldrake, P., Bavetsias, V., Atrash, B., & Blagg, J. (2013). Structure-based design of orally bioavailable 1H-pyrrolo[3,2-c]pyridine inhibitors of mitotic kinase monopolar spindle 1 (MPS1). Journal of Medicinal Chemistry, 56(24), 10045–10065. doi:10.1021/jm401395s
  • Seeber, M., Cecchini, M., Rao, F., Settanni, G., & Caflisch, A. (2007). Wordom: A program for efficient analysis of molecular dynamics simulations. Bioinformatics, 23(19), 2625–2627. doi:10.1093/bioinformatics/btm378
  • Shaikh, F., Bhakat, S., Thakur, A., Radadia, A., Soliman, M. E. S., & Shah, A. (2015). Identification of Novel GSK1070916 analogs as potential Aurora B inhibitors: Insights from molecular dynamics and MM/GBSA based rescoring. Letters in Drug Design & Discovery, 12(1), 2–13.
  • Talele, T. T., & McLaughlin, M. L. (2008). Molecular docking/dynamics studies of Aurora A kinase inhibitors. Journal of Molecular Graphics & Modelling, 26(8), 1213–1222. doi:10.1016/j.jmgm.2007.11.003
  • von Schubert, C., Cubizolles, F., Bracher, J. M., Sliedrecht, T., Kops, G. J., & Nigg, E. A. (2015). Plk1 and Mps1 cooperatively regulate the spindle assembly checkpoint in human cells. Cell Reports, 12(1), 66–78. doi:10.1016/j.celrep.2015.06.007
  • Yan, L. B., Zhang, L., Zhang, Y. M., Qiao, X., Pan, J., Liu, H. C., … Yuan, H. L. (2017). Insight into the key features for ligand binding in Y1230 mutated c-Met kinase domain by molecular dynamics simulations. Journal of Biomolecular Structure and Dynamics,. 1–17. doi:10.1080/07391102.2017.1340852
  • Zaman, G., de Man, J., Uitdehaag, J., Maia, A., Boon, U., Sterrenburg, J. G., & Buijsman, R. (2015). Identification of selective inhibitors of the spindle assembly checkpoint kinase Ttk (Mps1) for treatment of triple negative breast cancer. Annals of Oncology, 26, ii30–ii30. doi:10.1093/annonc/mdv095.9
  • Zhang, H. J., Yu, H., Zhao, X., Liu, X. G., Feng, X. L., & Huang, X. R. (2017). Investigations of takeout proteins’ ligand binding and release mechanism using molecular dynamics simulation. Journal of Biomolecular Structure and Dynamics, 35(7), 1464–1473. doi:10.1080/07391102.2016.1185646
  • Zhao, Y., & Chen, R. H. (2006). Mps1 phosphorylation by MAP kinase is required for kinetochore localization of spindle-checkpoint proteins. Current Biology, 16(17), 1764–1769. doi:10.1016/j.cub.2006.07.058

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.