477
Views
18
CrossRef citations to date
0
Altmetric
Research Article

Virtual screening of natural inhibitors targeting ornithine decarboxylase with pharmacophore scaffolding of DFMO and validation by molecular dynamics simulation studies

, &
Pages 766-780 | Received 13 Nov 2017, Accepted 06 Feb 2018, Published online: 23 Feb 2018

References

  • Almrud, J. J., Oliveira, M. A., Kern, A. D., Grishin, N. V., Phillips, M. A., & Hackert, M. L. (2000). Crystal structure of human ornithine decarboxylase at 2.1 Å resolution: Structural insights to antizyme binding. Journal of Molecular Biology, 295(1), 7–16.10.1006/jmbi.1999.3331
  • Arumugam, A., Weng, Z., Talwelkar, S. S., Chaudhary, S. C., Kopelovich, L., Elmets, C.A., … Athar, M. (2013). Inhibiting cycloxygenase and ornithine decarboxylase by diclofenac and alpha-difluoromethylornithine blocks cutaneous SCCs by targeting Akt-ERK axis. PloS One, 8(11), e80076.10.1371/journal.pone.0080076
  • Astolfi, A., Felicetti, T., Iraci, N., Manfroni, G., Massari, S., Pietrella, D., … Cecchetti, V. (2017). Pharmacophore-based repositioning of approved drugs as novel Staphylococcus aureus NorA efflux pump inhibitors. Journal of Medicinal Chemistry, 60(4), 1598–1604.10.1021/acs.jmedchem.6b01439
  • Banavath, H. N., Sharma, O. P., Kumar, M. S., & Baskaran, R. (2014). Identification of novel tyrosine kinase inhibitors for drug resistant T315I mutant BCR-ABL: A virtual screening and molecular dynamics simulations study. Scientific Reports, 4, 6948.
  • Bowers K. J., Chow E., Xu H., Dror R., Eastwood M. P., Gregersen B. A., … Shaw, D. E. (Eds.). (2006). Scalable algorithms for molecular dynamics simulations on commodity clusters. New York, NY: IEEE.
  • Bryson, K., & Greenall, R. J. (2000). Binding sites of the polyamines putrescine, cadaverine, spermidine and spermine on A- and B-DNA located by simulated annealing. Journal of Biomolecular Structure & Dynamics, 18(3), 393–412.10.1080/07391102.2000.10506676
  • Chow, E., Klepeis, J. L., Rendleman, C. A., Dror, R. O., & Shaw, D. E. (2012). New technologies for molecular dynamics simulations. Comprehensive Biophysics, 9, 86–104. Elsevier: Amsterdam, NL. doi:10.1016/B978-0-12-374920-8.00908-5
  • Correa-Basurto, J., Rodríguez-Páez, L., Aguiar-Moreno, E. S., López-Sánchez, P., Espinoza-Fonseca, L. M., Wong, C., & Trujillo-Ferrara, J. (2009). Computational and experimental evaluation of ornithine derivatives as ornithine decarboxylase inhibitors. Medicinal Chemistry Research, 18(1), 20–30.10.1007/s00044-008-9103-6
  • Darden, T., Perera, L., Li, L., & Pedersen, L. (1999). New tricks for modelers from the crystallography toolkit: The particle mesh Ewald algorithm and its use in nucleic acid simulations. Structure (London, England: 1993), 7(3), R55-R60.10.1016/S0969-2126(99)80033-1
  • Dubey, V. K., & Ponnuraj, K. (2017). Identification of two natural compound inhibitors of Leishmania donovani Spermidine Synthase (SpdS) through molecular docking and dynamic studies. Journal of Biomolecular Structure & Dynamics, 1–16.
  • Dufe, V. T., Ingner, D., Heby, O., Khomutov, A. R., Persson, Lo, & Al-Karadaghi, S. (2007). A structural insight into the inhibition of human and Leishmania donovani ornithine decarboxylases by 1-amino-oxy-3-aminopropane. The Biochemical Journal, 405(2), 261–268.10.1042/BJ20070188
  • Ekins, S., Freundlich, J. S., & Coffee, M. (2014). A common feature pharmacophore for FDA-approved drugs inhibiting the Ebola virus. F1000Research, 3, 277.
  • Elmets, C. A., & Athar, M. (2010). Targeting ornithine decarboxylase for the prevention of nonmelanoma skin cancer in humans. Cancer Prevention Research (Philadelphia, Pa.), 3(1), 8–11.10.1158/1940-6207.CAPR-09-0248
  • Evans, D. J., & Holian, B. L. (1985). The Nose–Hoover thermostat. The Journal of Chemical Physics, 83(8), 4069–4074.10.1063/1.449071
  • Friesner, R. A., Murphy, R. B., Repasky, M. P., Frye, L. L., Greenwood, J. R., Halgren, T. A., … Mainz, D. T. (2006). Extra precision glide: Docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. Journal of Medicinal Chemistry, 49(21), 6177–6196.10.1021/jm051256o
  • Grover, A., Katiyar, S. P., Jeyakanthan, J., Dubey, V. K., & Sundar, D. (2012). Mechanistic insights into the dual inhibition strategy for checking Leishmaniasis. Journal of Biomolecular Structure & Dynamics, 30(4), 474–487.10.1080/07391102.2012.682212
  • Gu, J., Gui, Y., Chen, L., Yuan, G., Lu, H.-Z., & Xu, X. (2013). Use of natural products as chemical library for drug discovery and network pharmacology. PloS One, 8(4), e62839.10.1371/journal.pone.0062839
  • Gupta, S., Ahmad, N., Marengo, S. R., MacLennan, G. T., Greenberg, N. M., & Mukhtar, H. (2000). Chemoprevention of prostate carcinogenesis by alpha-difluoromethylornithine in TRAMP mice. Cancer Research, 60(18), 5125–5133.
  • Hevener, K. E., Mehboob, S., Su, P.-C., Truong, K., Boci, T., Deng, J., … Johnson, M. E. (2012). Discovery of a novel and potent class of F. tularensis enoyl-reductase (FabI) inhibitors by molecular shape and electrostatic matching. Journal of Medicinal Chemistry, 55(1), 268–279.10.1021/jm201168g
  • John, A., Sivashanmugam, M., Umashankar, V., & Natarajan, S. K. (2017). Virtual screening, molecular dynamics, and binding free energy calculations on human carbonic anhydrase IX catalytic domain for deciphering potential leads. Journal of Biomolecular Structure & Dynamics, 35(10), 2155–2168.10.1080/07391102.2016.1207565
  • Jorgensen, W. L., & Tirado-Rives, J. (1988). The OPLS optimized potentials for liquid simulations potential functions for proteins, energy minimizations for crystals of cyclic peptides and crambin. Journal of the American Chemical Society, 110(6), 1657–1666.10.1021/ja00214a001
  • Kannan, M., Manivel, P., Geetha, K., Muthukumaran, J., Rao, H. S. P., & Krishna, R. (2012). Synthesis and in silico evaluation of 1N-methyl-1S-methyl-2-nitroethylene (NMSM) derivatives against Alzheimer disease: To understand their interacting mechanism with acetylcholinesterase. Journal of Chemical Biology, 5(4), 151–166.10.1007/s12154-012-0084-z
  • Kotni Meena, N. C. (2015). QM/MM docking strategy and prime/MM-GBSA calculation of celecoxib analogues as N-myristoyltransferase inhibitors. Virology & Mycology, 4(1), 141.
  • Lagorce, D., Sperandio, O., Baell, J. B., Miteva, M. A., & Villoutreix, B. O. (2015). FAF-Drugs3: A web server for compound property calculation and chemical library design. Nucleic Acids Research, 43(W1), W200–W207.10.1093/nar/gkv353
  • Lauri, G., & Bartlett, P. A. (1994). CAVEAT: A program to facilitate the design of organic molecules. Journal of Computer-Aided Molecular Design, 8(1), 51–66.10.1007/BF00124349
  • Lipinski, C. A. (2004). Lead- and drug-like compounds: The rule-of-five revolution. Drug Discovery Today. Technologies, 1(4), 337–341.10.1016/j.ddtec.2004.11.007
  • Lozier, A. M., Rich, M. E., Grawe, A. P., Peck, A. S., Zhao, P., Chang, A. T.-T., … Sholler, G. S. (2015). Targeting ornithine decarboxylase reverses the LIN28/let-7 axis and inhibits glycolytic metabolism in neuroblastoma. Oncotarget, 6(1), 196–206.
  • Luqman, S. (2012). Ornithine decarboxylase: A promising and exploratory candidate target for natural products in cancer chemoprevention. Asian Pacific Journal of Cancer Prevention: APJCP, 13(5), 2425–2427.10.7314/APJCP.2012.13.5.2425
  • Maass, P., Schulz-Gasch, T., Stahl, M., & Rarey, M. (2007). Recore: A fast and versatile method for scaffold hopping based on small molecule crystal structure conformations. Journal of Chemical Information and Modeling, 47(2), 390–399.10.1021/ci060094h
  • Manni, A., Mauger, D., Gimotty, P., & Badger, B. (1996). Prognostic influence on survival of increased ornithine decarboxylase activity in human breast cancer. Clinical Cancer Research: An Official Journal of the American Association for Cancer Research, 2(11), 1901–1906.
  • Martyna, G. J. 1994. Remarks on “Constant-temperature molecular dynamics with momentum conservation”. Physical Review. E, Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 50(4), 3234–3236.
  • McCann, P. P., & Pegg, A. E. (1992). Ornithine decarboxylase as an enzyme target for therapy. Pharmacology & Therapeutics, 54(2), 195–215.10.1016/0163-7258(92)90032-U
  • Muthukumaran, S., Bhuvanasundar, R., Umashankar, V., & Sulochana, K. N. (2017). Insights on ornithine decarboxylase silencing as a potential strategy for targeting retinoblastoma. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie, 98, 23–28.
  • Nowotarski, S. L., Woster, P. M., & Casero, R. A. (2013). Polyamines and cancer: Implications for chemotherapy and chemoprevention. Expert Reviews in Molecular Medicine, 15, e3.10.1017/erm.2013.3
  • Palanimurugan, R., Scheel, H., Hofmann, K., & Dohmen, R. J. (2004). Polyamines regulate their synthesis by inducing expression and blocking degradation of ODC antizyme. The EMBO Journal, 23(24), 4857–4867.10.1038/sj.emboj.7600473
  • Pasic, T. R., Heisey, D., & Love, R. R. (1997). alpha-difluoromethylornithine ototoxicity. Chemoprevention clinical trial results. Archives of Otolaryngology–Head & Neck Surgery, 123(12), 1281–1286.10.1001/archotol.1997.01900120031004
  • Patel, C. N., Georrge, J. J., Modi, K. M., Narechania, M. B., Patel, D. P., Gonzalez, F. J., & Pandya, H. A. (2017). Pharmacophore-based virtual screening of catechol-o-methyltransferase (COMT) inhibitors to combat Alzheimer’s disease. Journal of Biomolecular Structure & Dynamics, 27, 1–20.10.1080/07391102.2017.1404931
  • Paz, E. A., LaFleur, B., & Gerner, E. W. (2014). Polyamines are oncometabolites that regulate the LIN28/let-7 pathway in colorectal cancer cells. Molecular Carcinogenesis, 53(Suppl 1), E96–E106.10.1002/mc.v53.S1
  • Pegg, A. E. (2006). Regulation of ornithine decarboxylase. The Journal of Biological Chemistry, 281(21), 14529–14532.10.1074/jbc.R500031200
  • Pegg, A. E. (2016). Functions of polyamines in mammals. The Journal of Biological Chemistry, 291(29), 14904–14912.10.1074/jbc.R116.731661
  • Preeti, S. T., Kumar, P., Madhubala, R., & Tomar, S. (2013). Structural insight into DFMO resistant ornithine decarboxylase from Entamoeba histolytica: An inkling to adaptive evolution. PloS One, 8(1), e53397.10.1371/journal.pone.0053397
  • Sanchita, Chauhan, R., Soni, G., Sudhamalla, B., & Sharma, A. (2013). Docking and molecular dynamics studies of peptide inhibitors of ornithine decarboxylase: A rate-limiting enzyme for the metabolism of Fusarium solani. Journal of Biomolecular Structure & Dynamics, 31(8), 874–887.10.1080/07391102.2012.718526
  • Saxena, S., Abdullah, M., Sriram, D., & Guruprasad, L. (2017). Discovery of novel inhibitors of Mycobacterium tuberculosis MurG: Homology modelling, structure based pharmacophore, molecular docking, and molecular dynamics simulations. Journal of Biomolecular Structure & Dynamics, 1–15.10.1080/07391102.2017.1384398
  • Shivakumar, D., Williams, J., Wu, Y., Damm, W., Shelley, J., & Sherman, W. (2010). Prediction of absolute solvation free energies using molecular dynamics free energy perturbation and the OPLS force field. Journal of Chemical Theory and Computation, 6(5), 1509–1519.10.1021/ct900587b
  • Sivashanmugam, M., Jaidev, J., Umashankar, V., & Sulochana, K. N. (2017). Ornithine and its role in metabolic diseases: An appraisal. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie, 86, 185–194.10.1016/j.biopha.2016.12.024
  • Sivashanmugam, M., Raghunath, C., & Vetrivel, U. (2013). Virtual screening studies reveal linarin as a potential natural inhibitor targeting CDK4 in retinoblastoma. Journal of Pharmacology & Pharmacotherapeutics, 4(4), 256–264.
  • Smith, M. C., Tinling, S., & Doyle, K. J. (2004). Difluoromethylornithine-induced reversible hearing loss across a wide frequency range. The Laryngoscope, 114(6), 1113–1117.10.1097/00005537-200406000-00029
  • Su, P.-C., Tsai, C.-C., Mehboob, S., Hevener, K. E., & Johnson, M. E. (2015). Comparison of radii sets, entropy, QM methods, and sampling on MM-PBSA, MM-GBSA, and QM/MM-GBSA ligand binding energies of F. tularensis enoyl-ACP reductase (FabI). Journal of Computational Chemistry, 36(25), 1859–1873.10.1002/jcc.v36.25
  • Thomas, T., & Thomas, T. J. (2003). Polyamine metabolism and cancer. Journal of Cellular and Molecular Medicine, 7(2), 113–126.10.1111/jcmm.2003.7.issue-2
  • Ueda, A., Araie, M., & Kubota, S. (2008). Polyamine depletion induces G1 and S phase arrest in human retinoblastoma Y79 cells. Cancer Cell International, 8, 2.10.1186/1475-2867-8-2
  • Umashankar, V., & Gurunathan, S. (2015). Drug discovery: An appraisal. International Journal of Pharmacy and Pharmaceutical Sciences, 7(4), 59–66. Retrieved from https://innovareacademics.in/journals/index.php/ijpps/article/view/4859/8595
  • Umashankar, V. & Gurunathan, S. (2009). Chemoinformatics and its Applications. In B. Ballantyne, T. C. Marrs, T. Syversen, D. A. Casciano, & S. C. Sahu (Eds.), General, Applied and Systems Toxicology. Chichester: Wiley. doi:10.1002/9780470744307.gat222
  • Voet, A., Qing, X., Lee, X. Y., de Raeymaecker, J., Tame, J., Zhang, K., & de Maeyer, M. (2014). Pharmacophore modeling: Advances, limitations, and current utility in drug discovery. Journal of Receptor, Ligand and Channel Research, 7, 81–92.
  • Wallace, H. M., Fraser, A. V., & Hughes, A. (2003). A perspective of polyamine metabolism. The Biochemical Journal, 376(Pt 1), 1–14.10.1042/bj20031327
  • Wang, L., Pang, X., Li, Y., Zhang, Z., & Tan, W. (2017). RADER: A RApid DEcoy Retriever to facilitate decoy based assessment of virtual screening. Bioinformatics (Oxford, England), 33(8), 1235–1237.
  • Wu, H.-Y., Chen, S.-F., Hsieh, J.-Y., Chou, F., Wang, Y.-H., Lin, W.-T., … Chan, N.-L. (2015). Structural basis of antizyme-mediated regulation of polyamine homeostasis. Proceedings of the National Academy of Sciences of the United States of America, 112(36), 11229–11234.10.1073/pnas.1508187112
  • Wu, F., Grossenbacher, D., & Gehring, H. (2007). New transition state-based inhibitor for human ornithine decarboxylase inhibits growth of tumor cells. Molecular Cancer Therapeutics, 6(6), 1831–1839.10.1158/1535-7163.MCT-07-0045
  • Wu, D., Kaan, H. Y. K., Zheng, X., Tang, X., He, Y., Vanessa Tan, Q., … Song, H. (2015). Structural basis of ornithine decarboxylase inactivation and accelerated degradation by polyamine sensor Antizyme1. Scientific Reports, 5, 14738.10.1038/srep14738
  • Zhang, G., & Musgrave, C. B. (2007). Comparison of DFT methods for molecular orbital eigenvalue calculations. The Journal of Physical Chemistry A, 111(8), 1554–1561.10.1021/jp061633o

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.