518
Views
30
CrossRef citations to date
0
Altmetric
Research Article

Dynamic structure based pharmacophore modeling of the Acetylcholinesterase reveals several potential inhibitors

, &
Pages 1800-1812 | Received 13 Mar 2018, Accepted 17 Apr 2018, Published online: 18 May 2018

References

  • de Almeida, J. S. , Cuya Guizado, T. R. , Guimarães, A. P. , Ramalho, T. C. , Gonçalves, A. S. , de Koning, M. C. , & França, T. C. (2016). Docking and molecular dynamics studies of peripheral site ligand–oximes as reactivators of sarin-inhibited human acetylcholinesterase. Journal of Biomolecular Structure and Dynamics , 34 (12), 2632–2642. doi:10.1080/07391102.2015.1124807
  • B Ghasemi, J. , Shiri, F. , Pirhadi, S. , & Heidari, Z. (2015). Discovery of new potential antimalarial compounds using virtual screening of ZINC database. Combinatorial Chemistry & High Throughput Screening , 18 (2), 227–234. doi:10.2174/1386207318666141229123705
  • Barnard, E. A. (1974). Neuromuscular transmission – enzymatic destruction of acetylcholine. The Peripheral Nervous System (pp. 201–224). Springer. doi: 10.1007/978-1-4615-8699-9_9
  • Case, D. A. , Cheatham, T. E. , Darden, T. , Gohlke, H. , Luo, R. , Merz, K. M. , … Woods, R. J. (2005). The Amber biomolecular simulation programs. Journal of Computational Chemistry , 26 (16), 1668–1688. doi:10.1002/jcc.20290
  • Cheung, J. , Rudolph, M. J. , Burshteyn, F. , Cassidy, M. S. , Gary, E. N. , Love, J. , … Height, J. J. (2012). Structures of human acetylcholinesterase in complex with pharmacologically important ligands. Journal of Medicinal Chemistry , 55 (22), 10282–10286. doi:10.1021/jm300871x
  • Daura, X. , Gademann, K. , Jaun, B. , Seebach, D. , van Gunsteren, W. F. , & Mark, A. E. (1999). Peptide folding: When simulation meets experiment. Angewandte Chemie International Edition , 38 (1-2), 236–240. doi:10.1002/(SICI)1521-3773(19990115)38:1/2<236::AID-ANIE236>3.0.CO;2-M
  • Dvir, H. , Silman, I. , Harel, M. , Rosenberry, T. L. , & Sussman, J. L. (2010). Acetylcholinesterase: From 3D structure to function. Chemico-Biological Interactions , 187 (1-3), 10–22. doi:10.1016/j.cbi.2010.01.042
  • EA de Lima, W. , F Pereira, A. , A de Castro, A. , F. F. da Cunha, E. , & C Ramalho, T. (2016). Flexibility in the molecular design of acetylcholinesterase reactivators: Probing representative conformations by chemometric techniques and docking/QM calculations. Letters in Drug Design & Discovery , 13 (5), 360–371. doi:10.2174/1570180812666150918191550
  • Ekins, S. , Andreyev, S. , Ryabov, A. , Kirillov, E. , Rakhmatulin, E. A. , Sorokina, S. , … Nikolskaya, T. (2006). A combined approach to drug metabolism and toxicity assessment. Drug Metabolism and Disposition , 34 (3), 495–503. doi:10.1124/dmd.105.008458
  • Ghasemi, J. B. , & Pirhadi, S. (2011). Docking alignment-3D-QSAR of a new class of potent and non-chiral indole-3-carboxamide-based renin inhibitors. Collection of Czechoslovak Chemical Communications , 76 (12), 1447–1469. doi:10.1135/cccc2011070
  • Gonçalves, M. A. , Santos, L. S. , Peixoto, F. C. , da Cunha, E. F. , Silva, T. C. , & Ramalho, T. C. (2017). Comparing structure and dynamics of solvation of different iron oxide phases for enhanced magnetic resonance imaging. ChemistrySelect , 2 (31), 10136–10142. doi:10.1002/slct.201701705
  • Gurung, A. B. , Aguan, K. , Mitra, S. , & Bhattacharjee, A. (2017). Identification of molecular descriptors for design of novel Isoalloxazine derivatives as potential Acetylcholinesterase inhibitors against Alzheimer’s disease. Journal of Biomolecular Structure and Dynamics , 35 (8), 1729–1742. doi:10.1080/07391102.2016.1192485
  • Hopkins, A. L. , Keserü, G. M. , Leeson, P. D. , Rees, D. C. , & Reynolds, C. H. (2014). The role of ligand efficiency metrics in drug discovery. Nature Reviews Drug Discovery , 13 (2), 105–121. doi:10.1038/nrd4163
  • Iqbal, S. , Anantha Krishnan, D. , & Gunasekaran, K. (2017). Identification of potential PKC inhibitors through pharmacophore designing, 3D-QSAR and molecular dynamics simulations targeting Alzheimer’s disease. Journal of Biomolecular Structure and Dynamics , pp. 1–16. doi: 10.1080/07391102.2017.1406824
  • Keserü, G. M. , & Makara, G. M. (2009). The influence of lead discovery strategies on the properties of drug candidates. Nature Reviews Drug Discovery , 8 (3), 203. doi:10.1038/nrd2796
  • Koes, D. R. , Baumgartner, M. P. , & Camacho, C. J. (2013). Lessons learned in empirical scoring with smina from the CSAR 2011 benchmarking exercise. Journal of Chemical Information and Modeling , 53 (8), 1893. doi:10.1021/ci300604z
  • Kryger, G. , Silman, I. , & Sussman, J. L. (1998). Three-dimensional structure of a complex of E2020 with acetylcholinesterase from Torpedo californica. Journal of Physiology-Paris , 92 (3-4), 191–194. doi:10.1016/S0928-4257(98)80008-9
  • Kryger, G. , Silman, I. , & Sussman, J. L. (1999). Structure of acetylcholinesterase complexed with E2020 (Aricept®): Implications for the design of new anti-Alzheimer drugs. Structure , 7 (3), 297–307. doi:10.1016/S0969-2126(99)80040-9
  • Kuntz, I. , Chen, K. , Sharp, K. , & Kollman, P. (1999). The maximal affinity of ligands. Proceedings of the National Academy of Sciences , 96 (18), 9997–10002. doi:10.1073/pnas.96.18.9997
  • Ladner, C. J. , & Lee, J. M. (1998). Pharmacological drug treatment of Alzheimer disease: The cholinergic hypothesis revisited. Journal of Neuropathology & Experimental Neurology , 57 (8), 719–731. doi:10.1097/00005072-199808000-00001. Retrieved from http://journals.lww.com/jneuropath/Fulltext/1998/08000/Pharmacological_Drug_Treatment_of_Alzheimer1.aspx
  • Leeson, P. D. , & Springthorpe, B. (2007). The influence of drug-like concepts on decision-making in medicinal chemistry. Nature Reviews Drug Discovery , 6 (11), 881. doi:10.1038/nrd2445
  • Lindorff-Larsen, K. , Piana, S. , Palmo, K. , Maragakis, P. , Klepeis, J. L. , Dror, R. O. , & Shaw, D. E. (2010). Improved side-chain torsion potentials for the Amber ff99SB protein force field. Proteins: Structure, Function, and Bioinformatics , 78 (8), 1950–1958. doi:10.1002/prot.22711
  • Lipinski, C. A. , Lombardo, F. , Dominy, B. W. , & Feeney, P. J. (2001). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced Drug Delivery Reviews , 46 (1-3), 3–26. doi:10.1016/S0169-409X(00)00129-0
  • Malik, R. , Choudhary, B. S. , Srivastava, S. , Mehta, P. , & Sharma, M. (2017). Identification of novel acetylcholinesterase inhibitors through e-pharmacophore-based virtual screening and molecular dynamics simulations. Journal of Biomolecular Structure and Dynamics , 35 (15), 3268–3284. doi:10.1080/07391102.2016.1253503
  • Malik, R. , Gupta, R. , Srivastava, S. , Choudhary, B. S. , & Sharma, M. (2017). Design, synthesis and biological evaluation of selected 3-[3-(amino) propoxy] benzenamines as acetylcholinesterase inhibitors. Journal of Biomolecular Structure and Dynamics , 35 (11), 2382–2394. doi:10.1080/07391102.2016.1220330
  • Mehta, M. , Adem, A. , & Sabbagh, M. (2011). New acetylcholinesterase inhibitors for Alzheimer’s disease. International Journal of Alzheimer’s Disease , 2012 , 1–8. doi:10.1155/2012/728983
  • Melnikova, I. (2007). Therapies for Alzheimer’s disease. Nature Reviews Drug Discovery , 6 (5), 341–342. doi:10.1038/nrd2314
  • Mohammadi, T. , & Ghayeb, Y. (2018). Atomic insight into designed carbamate-based derivatives as acetylcholine esterase (AChE) inhibitors: A computational study by multiple molecular docking and molecular dynamics simulation. Journal of Biomolecular Structure and Dynamics , 36 (1), 126–138. doi:10.1080/07391102.2016.1268977
  • Murray, C. W. , Baxter, C. A. , & Frenkel, A. D. (1999). The sensitivity of the results of molecular docking to induced fit effects: Application to thrombin, thermolysin and neuraminidase. Journal of Computer-Aided Molecular Design , 13 (6), 547–562. doi:10.1023/A:1008015827877
  • Norinder, U. , & Bergström, C. A. (2006). Prediction of ADMET Properties. ChemMedChem , 1 (9), 920–937. doi:10.1002/cmdc.200600155
  • Pascoini, A. , Federico, L. , Arêas, A. , Verde, B. , Freitas, P. , & Camps, I. (2018). In silico development of new acetylcholinesterase inhibitors. Journal of Biomolecular Structure and Dynamics (just-accepted), pp. 1–15. doi: 10.1080/07391102.2018.1447513
  • Pearlman, D. A. , Case, D. A. , Caldwell, J. W. , Ross, W. S. , Cheatham, T. E., III , DeBolt, S. , … Kollman, P. (1995). AMBER, a package of computer programs for applying molecular mechanics, normal mode analysis, molecular dynamics and free energy calculations to simulate the structural and energetic properties of molecules. Computer Physics Communications , 91 (1-3), 1–41. doi:10.1016/0010-4655(95)00041-D
  • Pirhadi, S. , Shiri, F. , & Ghasemi, J. B. (2013). Methods and applications of structure based pharmacophores in drug discovery. Current Topics in Medicinal Chemistry , 13 (9), 1036–1047. doi:10.2174/1568026611313090006
  • Quinn, D. M. (1987). Acetylcholinesterase: Enzyme structure, reaction dynamics, and virtual transition states. Chemical Reviews , 87 (5), 955–979. doi:10.1021/cr00081a005
  • Sander, T. , Freyss, J. , von Korff, M. , & Rufener, C. (2015). DataWarrior: An open-source program for chemistry aware data visualization and analysis. Journal of Chemical Information and Modeling , 55 (2), 460–473. doi:10.1021/ci500588j
  • Shao, J. , Tanner, S. W. , Thompson, N. , & Cheatham, T. E. (2007). Clustering molecular dynamics trajectories: 1. Characterizing the performance of different clustering algorithms. Journal of Chemical Theory and Computation , 3 (6), 2312–2334. doi:10.1021/ct700119 m
  • Shiri, F. , Pirhadi, S. , & Rahmani, A. (2018). Identification of new potential HIV-1 reverse transcriptase inhibitors by QSAR modeling and structure-based virtual screening. Journal of Receptors and Signal Transduction , 38 (1), 37–47. doi:10.1080/10799893.2017.1414844
  • da Silva Gonçalves, A. , França, T. C. C. , & Vital de Oliveira, O. (2016). Computational studies of acetylcholinesterase complexed with fullerene derivatives: A new insight for Alzheimer disease treatment. Journal of Biomolecular Structure and Dynamics , 34 (6), 1307–1316. doi:10.1080/07391102.2015.1077345
  • Sohn, Y.-S. , Park, C. , Lee, Y. , Kim, S. , Thangapandian, S. , Kim, Y. , … Lee, K. W. (2013). Multi-conformation dynamic pharmacophore modeling of the peroxisome proliferator-activated receptor γ for the discovery of novel agonists. Journal of Molecular Graphics and Modelling , 46 , 1–9. doi:10.1016/j.jmgm.2013.08.012
  • Sugimoto, H. , Yamanish, Y. , Iimura, Y. , & Kawakami, Y. (2000). Donepezil hydrochloride (E2020) and other acetylcholinesterase inhibitors. Current Medicinal Chemistry , 7 (3), 303–339. doi:10.2174/0929867003375191
  • Sunseri, J. , & Koes, D. R. (2016). Pharmit: Interactive exploration of chemical space. Nucleic Acids Research , 44 (w1), w442–w448. doi:10.1093/nar/gkw287
  • Sussman, J. L. , Harel, M. , Frolow, F. , Oefner, C. , Goldman, A. , Toker, L. , & Silman, I. (1991). Atomic structure of acetylcholinesterase from Torpedo californica: A prototypic acetylcholine-binding protein. Science , 253 (5022), 872–879. doi:10.1126/science.1678899
  • Tabet, N. (2006). Acetylcholinesterase inhibitors for Alzheimer’s disease: Anti-inflammatories in acetylcholine clothing!. Age and Ageing , 35 (4), 336–338. doi:10.1093/ageing/afl027
  • Van Der Spoel, D. , Lindahl, E. , Hess, B. , Groenhof, G. , Mark, A. E. , & Berendsen, H. J. (2005). GROMACS: Fast, flexible, and free. Journal of Computational Chemistry , 26 (16), 1701–1718. doi:10.1002/jcc.20291
  • Walters, W. P. , Stahl, M. T. , & Murcko, M. A. (1998). Virtual screening–an overview. Drug Discovery Today , 3 (4), 160–178. doi:10.1016/S1359-6446(97)01163-X
  • Xu, M. , & Lill, M. A. (2013). Induced fit docking, and the use of QM/MM methods in docking. Drug Discovery Today: Technologies , 10 (3), e411–e418. doi:10.1016/j.ddtec.2013.02.003
  • http://pharmit.csb.pitt.edu/
  • http://smina.sf.net
  • https://www.drugbank.ca/drugs/DB00843

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.