140
Views
6
CrossRef citations to date
0
Altmetric
Research Article

Computational simulations assessment of mutations impact on streptokinase (SK) from a group G streptococci with enhanced activity – insights into the functional roles of structural dynamics flexibility of SK and stabilization of SK–μplasmin catalytic complex

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 1944-1955 | Received 08 Jan 2018, Accepted 19 Apr 2018, Published online: 28 May 2018

References

  • Abraham, M., Van Der Spoel, D., Lindahl, E., Hess, B., van Buuren, A., Apol, E., & Feenstra, K. (2015). GROMACS user manual version 5.1.
  • Aneja, R., Datt, M., Singh, B., Kumar, S., & Sahni, G. (2009). Identification of a new exosite involved in catalytic turnover by the streptokinase-plasmin activator complex during human plasminogen activation. Journal of Biological Chemistry, 284(47), 32642–32650.10.1074/jbc.M109.046573
  • Aneja, R., Datt, M., Yadav, S., & Sahni, G. (2013). Multiple exosites distributed across the three domains of streptokinase co-operate to generate high catalytic rates in the streptokinase-plasmin activator complex. Biochemistry, 52(49), 8957–8968.10.1021/bi400142s
  • Arabi, R., Roohvand, F., Norouzian, D., Sardari, S., Aghasadeghi, M. R., Khanahmad, H., … Motevalli, F. (2011). A comparative study on the activity and antigenicity of truncated and full-length forms of streptokinase. Pol J Microbiol, 60(3), 243–251.
  • Axelsson, F. (1995). Plasminogen: Product monograph. Available from URL:http: //www. Chromogenix.Se/
  • Bean, R. R., Verhamme, I. M., & Bock, P. E. (2005). Role of the streptokinase α-domain in the interactions of streptokinase with Plasminogen and Plasmin. Journal of Biological Chemistry, 280(9), 7504–7510.10.1074/jbc.M411637200
  • Berendsen, H. J., Postma, J. V., van Gunsteren, W. F., DiNola, A., & Haak, J. (1984). Molecular dynamics with coupling to an external bath. The Journal of Chemical Physics, 81(8), 3684–3690.10.1063/1.448118
  • Boxrud, P. D., Verhamme, I. M., & Bock, P. E. (2004). Resolution of Conformational Activation in the Kinetic Mechanism of Plasminogen Activation by Streptokinase. Journal of Biological Chemistry, 279(35), 36633–36641.10.1074/jbc.M405264200
  • Broomhead, N. K., & Soliman, M. E. (2017). Can We Rely on Computational Predictions To Correctly Identify Ligand Binding Sites on Novel Protein Drug Targets? Assessment of Binding Site Prediction Methods and a Protocol for Validation of Predicted Binding Sites. Cell Biochemistry and Biophysics, 75(1), 15–23.10.1007/s12013-016-0769-y
  • Bussi, G., Donadio, D., & Parrinello, M. (2007). Canonical sampling through velocity rescaling. The Journal of Chemical Physics, 126(1), 014101.10.1063/1.2408420
  • Chaudhary, A., Vasudha, S., Rajagopal, K., Komath, S. S., Garg, N., Yadav, M., … Sahni, G. (1999). Function of the central domain of streptokinase in substrate plasminogen docking and processing revealed by site-directed mutagenesis. Protein Science, 8(12), 2791–2805.
  • Chen, L., Morrow, J. K., Tran, H. T., Phatak, S. S., Du-Cuny, L., & Zhang, S. (2012). From Laptop to Benchtop to Bedside: Structure-based drug design on protein targets. Current Pharmaceutical Design, 18(9), 1217–1239.10.2174/138161212799436386
  • Chen, V. B., Arendall, W. B., Headd, J. J., Keedy, D. A., Immormino, R. M., Kapral, G. J., … Richardson, D. C. (2010). MolProbity: All-atom structure validation for macromolecular crystallography. Acta Crystallographica Section D: Biological Crystallography, 66(1), 12–21.10.1107/S0907444909042073
  • Craveur, P., Joseph, A. P., Esque, J., Narwani, T. J., Noël, F., Shinada, N., … Bertrand, O. (2015). Protein flexibility in the light of structural alphabets. Frontiers in molecular biosciences, 2, 20.
  • Culka, M., Gisdon, F. J., & Ullmann, G. M. (2017). Computational Biochemistry – Enzyme Mechanisms Explored. Advances in Protein Chemistry and Structural Biology, 109, 77–112.10.1016/bs.apcsb.2017.04.004
  • DeLano, W. L. (2002). The PyMOL Molecular Graphics System. Palo Alto, California, USA: DeLano Scientific LLC. http://www.pymol.org
  • Dror, R. O., Dirks, R. M., Grossman, J., Xu, H., & Shaw, D. E. (2012). Biomolecular simulation: A computational microscope for molecular biology. Annual Review of Biophysics, 41, 429–452.10.1146/annurev-biophys-042910-155245
  • Estarellas, C., Capece, L., Seira, C., Bidon-Chanal, A., Estrin, D., & Luque, F. (2016). Chapter Three-Structural Plasticity in Globins: Role of Protein Dynamics in Defining Ligand Migration Pathways. Advances in protein chemistry and structural biology, 105, 59–80.10.1016/bs.apcsb.2016.07.002
  • Hess, B., Bekker, H., Berendsen, H. J., & Fraaije, J. G. (1997). LINCS: A linear constraint solver for molecular simulations. Journal of Computational Chemistry, 18(12), 1463–1472.10.1002/(ISSN)1096-987X
  • Keramati, M., Aslani, M. M., Khatami, S., & Roohvand, F. (2017). Sequence and kinetic analyses of streptokinase from two group G streptococci with high fibrin-dependent plasminogen activities and the identification of novel altered amino acids as potential hot spots. Biotechnology Letters, 39(6), 889–895.10.1007/s10529-017-2310-9
  • Keramati, M., Arabi Mianroodi, R., Memarnejadian, A., Mirzaie, A., Sazvari, S., Mehdi Aslani, M., … Roohvand, F. (2013). Towards a superior streptokinase for fibrinolytic therapy of vascular thrombosis. Cardiovascular & Hematological Agents in Medicinal Chemistry, 11(3), 218–229.
  • Keramati, M., Roohvand, F., Aslani, M. M., Khatami, S., Aghasadeghi, M., Sadat, M., … Motevalli, F. (2013). Screening, Cloning and Expression of Active Streptokinase from an Iranian coli. Iranian journal of basic medical sciences, 16(4), 620.
  • Keramati, M., Roohvand, F., Aslani, M. M., Motevalli, F., & Memarnejadian, A. (2013). Pitfalls in screening streptococci for retrieving superior streptokinase (SK) genes: No activity correlation for streptococcal culture supernatant and recombinant SK. Journal of Industrial Microbiology & Biotechnology, 40(1), 151–158.10.1007/s10295-012-1205-y
  • Keramati, M., Roohvand, F., Eslaminejad, Z., Mirzaie, A., Nikbin, V. S., & Aslani, M. M. (2012). PCR/RFLP-based allelic variants of streptokinase and their plasminogen activation potencies. FEMS Microbiology Letters, 335(2), 79–85.10.1111/fml.2012.335.issue-2
  • Kim, D. M., Lee, S. J., Kim, I. C., Kim, S. T., & Byun, S. M. (2000). Asp41-His48 region of streptokinase is important in binding to a Substrate plasminogen. Thrombosis Research, 99(1), 93–98.10.1016/S0049-3848(00)00225-5
  • Klegerman, M. E. (2017). Translational initiatives in thrombolytic therapy. Frontiers of Medicine, 11(1), 1–19.10.1007/s11684-017-0497-8
  • Kobayashi, K., Takahashi, O., Hiratsuka, M., Yamaotsu, N., Hirono, S., Watanabe, Y., & Oda, A. (2014). Evaluation of influence of single nucleotide polymorphisms in cytochrome P450 2B6 on substrate recognition using computational docking and molecular dynamics simulation. PLoS ONE, 9(5), e96789.10.1371/journal.pone.0096789
  • Krieger, E., & Vriend, G. (2014). YASARA View – molecular graphics for all devices – from smartphones to workstations. Bioinformatics, 30(20), 2981–2982.10.1093/bioinformatics/btu426
  • Krishnamoorthy, N., Gajendrarao, P., Olivotto, I., & Yacoub, M. (2017). Impact of disease-causing mutations on inter-domain interactions in cMyBP-C: A steered molecular dynamics study. Journal of Biomolecular Structure and Dynamics, 35(9), 1916–1922.10.1080/07391102.2016.1199329
  • Law, R. H., Caradoc-Davies, T., Cowieson, N., Horvath, A. J., Quek, A. J., Encarnacao, J. A., … Lu, B. G. (2012). The X-ray crystal structure of full-length human plasminogen. Cell Reports, 1(3), 185–190.10.1016/j.celrep.2012.02.012
  • Lovell, S. C., Davis, I. W., Arendall, W. B., de Bakker, P. I., Word, J. M., Prisant, M. G., … Richardson, D. C. (2003). Structure validation by Cα geometry: Φ, ψ and Cβ deviation. Proteins: Structure, Function, and Bioinformatics, 50(3), 437–450.10.1002/prot.10286
  • Luthy, R., Bowie, J. U., & Eisenberg, D. (1992). Assessment of protein models with three-dimensional profiles. Nature, 356(6364), 83–85.10.1038/356083a0
  • McArthur, J. D., McKay, F. C., Ramachandran, V., Shyam, P., Cork, A. J., Sanderson-Smith, M. L., & Ranson, M. (2008). Allelic variants of streptokinase from Streptococcus pyogenes display functional differences in plasminogen activation. The FASEB Journal, 22(9), 3146–3153.10.1096/fj.08-109348
  • McAuley, M., & Timson, D. J. (2017). Modulating mobility: A paradigm for protein engineering? Applied Biochemistry and Biotechnology, 181(1), 83–90.10.1007/s12010-016-2200-y
  • Nevin Gerek, Z., Kumar, S., & Banu Ozkan, S. (2013). Structural dynamics flexibility informs function and evolution at a proteome scale. Evolutionary Applications, 6(3), 423–433.10.1111/eva.12052
  • Oostenbrink, C., Villa, A., Mark, A. E., & Van Gunsteren, W. F. (2004). A biomolecular force field based on the free enthalpy of hydration and solvation: The GROMOS force-field parameter sets 53A5 and 53A6. Journal of Computational Chemistry, 25(13), 1656–1676.10.1002/(ISSN)1096-987X
  • Parrado, J., Conejero-Lara, F., Smith, R. A., Marshall, J. M., Ponting, C. P., & Dobson, C. M. (1996). The domain organization of streptokinase: Nuclear magnetic resonance, circular dichroism, and functional characterization of proteolytic fragments. Protein Science, 5(4), 693–704.
  • Parrinello, M., & Rahman, A. (1981). Polymorphic transitions in single crystals: A new molecular dynamics method. Journal of Applied Physics, 52(12), 7182–7190.10.1063/1.328693
  • Piovesan, D., Minervini, G., & Tosatto, S. C. (2016). The RING 2.0 web server for high quality residue interaction networks. Nucleic Acids Research, 44(W1), W367–W374.10.1093/nar/gkw315
  • Roohvand, F. (2017). Streptokinase for treatment of thrombotic disorders: The end? Or the end of the beginning? Iranian biomedical journal, 22(3), 140–141.
  • Sazonova, I. Y., Robinson, B. R., Gladysheva, I. P., Castellino, F. J., & Reed, G. L. (2004). α domain deletion converts streptokinase into a fibrin-dependent plasminogen activator through mechanisms akin to staphylokinase and tissue plasminogen activator. Journal of Biological Chemistry, 279(24), 24994–25001.10.1074/jbc.M400253200
  • Shannon, P., Markiel, A., Ozier, O., Baliga, N. S., Wang, J. T., Ramage, D., & Ideker, T. (2003). Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Research, 13(11), 2498–2504.10.1101/gr.1239303
  • Shukla, H., Shukla, R., Sonkar, A., & Tripathi, T. (2017). Alterations in conformational topology and interaction dynamics caused by L418A mutation leads to activity loss of Mycobacterium tuberculosis isocitrate lyase. Biochemical and Biophysical Research Communications, 490(2), 276–282.10.1016/j.bbrc.2017.06.036
  • Stoisser, T., Brunsteiner, M., Wilson, D. K., & Nidetzky, B. (2016). Conformational flexibility related to enzyme activity: Evidence for a dynamic active-site gatekeeper function of Tyr215 in Aerococcus viridans lactate oxidase. Scientific Reports, 6(27892).
  • Sun, H., Li, Y., Li, D., & Hou, T. (2013). Insight into crizotinib resistance mechanisms caused by three mutations in ALK tyrosine kinase using free energy calculation approaches. Journal of Chemical Information and Modeling, 53(9), 2376–2389.10.1021/ci400188q
  • Sutthibutpong, T., Rattanarojpong, T., & Khunrae, P. (2017). Effects of helix and fingertip mutations on the thermostability of xyn11A investigated by molecular dynamics simulations and enzyme activity assays. Journal of Biomolecular Structure and Dynamics. doi:10.1080/07391102.2017.1404934
  • Tharp, A. C., Laha, M., Panizzi, P., Thompson, M. W., Fuentes-Prior, P., & Bock, P. E. (2009). Plasminogen substrate recognition by the streptokinase-plasminogen catalytic complex is facilitated by Arg 253 , Lys 256 , and Lys 257 in the streptokinase β-domain and kringle 5 of the substrate. Journal of Biological Chemistry, 284(29), 19511–19521.10.1074/jbc.M109.005512
  • Thirumal, D. K., George, C. P. D., Sneha, P., Tayubi, I., Siva, R., Chakraborty, C., & Magesh, R. (2017). Influence of V54M mutation in giant muscle protein titin: A computational screening and molecular dynamics approach. Journal of Biomolecular Structure and Dynamics, 35(5), 917–928.10.1080/07391102.2016.1166456
  • Verhamme, I. M., & Bock, P. E. (2014). Rapid binding of plasminogen to streptokinase in a catalytic complex reveals a three-step mechanism. Journal of Biological Chemistry, 289(40), 28006–28018.10.1074/jbc.M114.589077
  • Wakeham, N., Terzyan, S., Zhai, P., Loy, J., Tang, J., & Zhang, X. (2002). Effects of deletion of streptokinase residues 48-59 on plasminogen activation. Protein engineering, 15(9), 753–761.10.1093/protein/15.9.753
  • Wang, X., Lin, X., Loy, J. A., Tang, J., & Zhang, X. C. (1998). Crystal structure of the catalytic domain of human plasmin complexed with streptokinase. Science, 281(5383), 1662–1665.10.1126/science.281.5383.1662
  • Wang, X., Tang, J., Hunter, B., & Zhang, X. C. (1999). Crystal structure of streptokinase β-domain. FEBS Letters, 459(1), 85–89.10.1016/S0014-5793(99)01214-4
  • Webb, B., & Sali, A. (2014). Comparative protein structure modeling using MODELLER. Curr Protoc Bioinformatics, 47, 5.6.1–32. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/25199792
  • Wiederstein, M., & Sippl, M. J. (2007). ProSA-web: Interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Research, 35(suppl_2), W407–W410.10.1093/nar/gkm290
  • Wu, D.-H., Shi, G.-Y., Chuang, W.-J., Hsu, J.-M., Young, K.-C., Chang, C.-W., & Wu, H.-L. (2001). Coiled coil region of streptokinase γ-domain is essential for plasminogen activation. Journal of Biological Chemistry, 276(18), 15025–15033.10.1074/jbc.M005935200
  • Yadav, S., Datt, M., Singh, B., & Sahni, G. (2008). Role of the 88–97 loop in plasminogen activation by streptokinase probed through site-specific mutagenesis. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics, 1784(9), 1310–1318.10.1016/j.bbapap.2008.05.013
  • Yadav, S., Aneja, R., Kumar, P., Datt, M., Sinha, S., & Sahni, G. (2011). Identification through Combinatorial Random and Rational Mutagenesis of a Substrate-interacting Exosite in the γ Domain of Streptokinase. Journal of Biological Chemistry, 286(8), 6458–6469.10.1074/jbc.M110.152355
  • Zhalyalov, A. S., Panteleev, M. A., Gracheva, M. A., Ataullakhanov, F. I., & Shibeko, A. M. (2017). Co-ordinated spatial propagation of blood plasma clotting and fibrinolytic fronts. PLOS ONE, 12(7), e0180668.10.1371/journal.pone.0180668
  • Zhang, Y., Mayfield, J. A., Ploplis, V. A., & Castellino, F. J. (2014). The β-domain of cluster 2b streptokinase is a major determinant for the regulation of its plasminogen activation activity by cellular plasminogen receptors. Biochemical and Biophysical Research Communications, 444(4), 595–598.10.1016/j.bbrc.2014.01.109
  • Zhao, F.-L., Yang, G.-H., Xiang, S., Gao, D.-D., & Zeng, C. (2017). In silico analysis of the effect of mutation on epidermal growth factor receptor in non-small-cell lung carcinoma: From mutational analysis to drug designing. Journal of Biomolecular Structure and Dynamics, 35(2), 427–434.10.1080/07391102.2016.1146165

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.