119
Views
3
CrossRef citations to date
0
Altmetric
Research Article

The influence of Cu+ binding to hypoxanthine on stabilization of mismatches involving hypoxanthine and DNA bases: a DFT study

ORCID Icon, &
Pages 1923-1934 | Received 28 Jan 2018, Accepted 01 May 2018, Published online: 11 Nov 2018

References

  • Ananyan, G., Avetisyan, A., Aloyan, L., & Dalyan, Y. (2011). The stability of DNA–porphyrin complexes in the presence of Mn(II) ions. Biophysical Chemistry, 156, 96–101. doi:10.1016/j.bpc.2011.03.002
  • Anastassopoulou, J. (2003). Metal–DNA interactions. Journal of Molecular Structure, 651–653, 19–26. doi:10.1016/S0022-2860(02)00625-7
  • Bader, R. F. W. (1990). Atoms in molecules: A quantum theory. Oxford: Oxford University Press.
  • Bergstrom, D. E., Zhang, P., & Johnson, W. T. (1997). Comparison of the base pairing properties of a series of nitroazole nucleobase analogs in the oligodeoxyribonucleotide sequence 5'-d(CGCXAATTYGCG)-3'. Nucleic Acids Research. 25, 1935–1942. doi:10.1093/nar/25.10.1935
  • Biegler König, F., & Schönbohm, J. (2002). Update of the AIM2000-program for atoms in molecules. Journal of Computational Chemistry, 23, 1489–1494. doi:10.1002/jcc.10085
  • Brovaretś, O. O., & Hovorun, D. M. (2013). Prototropic tautomerism and basic molecular principles of hypoxanthine mutagenicity: an exhaustive quantum-chemical analysis. Journal of Biomolecular Structure and Dynamics, 31, 913–936. doi:10.1080/07391102.2012.715041
  • Brovaretś, O. O., & Hovorun, D. M. (2014a). Why the tautomerization of the G·C Watson–Crick base pair via the DPT does not cause point mutations during DNA replication? QM and QTAIM comprehensive analysis. Journal of Biomolecular Structure & Dynamics, 32, 1474–1499. doi:10.1080/07391102.2013.822829
  • Brovaretś, O. O., & Hovorun, D. M. (2014b). DPT tautomerisation of the G.Asyn and A*.G*syn DNA mismatches: a QM/QTAIM combined atomistic investigation. Physical Chemistry Chemical Physics, 16, 9074–9085. doi:10.1039/C4CP00488D
  • Brovaretś, O. O., & Hovorun, D. M. (2015a). Proton tunneling in the A· T Watson-Crick DNA base pair: myth or reality? Journal of Biomolecular Structure and Dynamics, 33, 2716–2720. doi:10.1080/07391102.2015.1092886
  • Brovaretś, O. O., & Hovorun, D. M. (2015b). The nature of the transition mismatches with Watson–Crick architecture: The G*·T or G·T* DNA base mispair or both? A QM/QTAIM perspective for the biological problem. Journal of Biomolecular Structure & Dynamics, 33, 925–945. doi:10.1080/07391102.2014.924879
  • Brovaretś, O. O., Yurenko, Y.P., & Hovorun, D. M. (2015). The significant role of the intermolecular CH⋯O/N hydrogen bonds in governing the biologically important pairs of the DNA and RNA modified bases: A comprehensive theoretical investigation. Journal of Biomolecular Structure & Dynamics, 33, 1624–1652. doi:10.1080/07391102.2014.968623
  • Brovaretś, O. O., Zhurakivsky, R. O., & Hovorun, D. M. (2013a). The physico-chemical mechanism of the tautomerisation via the DPT of the long Hyp∗·Hyp Watson–Crick base pair containing rare tautomer: A QM and QTAIM detailed look. Chemical Physics Letters, 578, 126–132. doi:10.1016/j.cplett.2013.05.067
  • Brovaretś, O. O., Zhurakivsky, R. O., & Hovorun, D. M. (2013b). The physico-chemical “anatomy” of the tautomerization through the DPT of the biologically important pairs of hypoxanthine with DNA bases: QM and QTAIM perspectives. Journal of Molecular Modeling, 19, 4119–4137. doi:10.1007/s00894-012-1720-9
  • Brovaretś, O. O., Zhurakivsky, R. O., & Hovorun, D. M. (2014a). A QM/QTAIM microstructural analysis of the tautomerisation via the DPT of the hypoxanthine·adenine nucleobase pair. Molecular Physics, 112, 2005–2016. doi:10.1080/00268976.2013.877170
  • Brovaretś, O. O., Zhurakivsky, R. O., & Hovorun, D. M. (2014b). Does the tautomeric status of the adenine bases change upon the dissociation of the A*·Asyn Topal-Fresco DNA mismatch? A combined QM and QTAIM atomistic insight. Physical Chemistry Chemical Physics, 16, 3715–3725. doi:10.1039/C3CP54708F
  • Brovaretś, O. O., Zhurakivsky, R. O., & Hovorun, D. M. (2014c). Is the DPT tautomerization of the long A·G Watson–Crick DNA base mispair a source of the adenine and guanine mutagenic tautomers? A QM and QTAIM response to the biologically important question. Journal of Computational Chemistry, 35, 451–466. doi:10.1002/jcc.23515
  • Brovaretś, O. O., Zhurakivsky, R. O., & Hovorun, D. M. (2015). DPT tautomerisation of the wobble guanine·thymine DNA base mispair is not mutagenic: QM and QTAIM arguments. Journal of Biomolecular Structure & Dynamics, 33, 674–689. doi: 10.1080/07391102.2014.897259
  • Caraiman D., Shoeib, T., Siu, K. W. M., Hopkinson, A. C., & Bohme, D. K. (2003). Investigations of the gas-phase reactivity of Cu+ and Ag+ glycine complexes towards CO, D2O and NH3. International Journal of Mass Spectrometry, 228, 629–646. doi:10.1016/S1387-3806(03)00210-0
  • Case-Green, S. C., & Southern, E. M. (1994). Studies on the base pairing properties of deoxyinosine by solid phase hybridisation to oligonucleotides. Nucleic Acids Research. 22, 131–136.
  • Clever, G. H., Kaul, C., & Carell, T. (2007). DNA–metal base pairs, Angewandte Chemie International Edition, 46, 6226–6236. doi: 10.1002/anie.200701185
  • Deng, H., Cahill, S. M., Abad, J-L., Lewandowicz, Callender, R. H., Schramm, V. L., & Jones, R. A. (2004). Active site contacts in the purine nucleoside phosphorylase − hypoxanthine complex by NMR and ab initio calculations. Biochemistry, 43, 15966–15974. doi: 10.1021/bi048167i
  • Espinosa, E., Molins, E., & Lecomte, C. (1998). Hydrogen bond strengths revealed by topological analyses of experimentally observed electron densities. Chemical Physics Letters, 285, 170–173. doi:10.1016/S0009-2614(98)00036-0
  • Festa, R.A., & Thiele, D.J. (2011). Copper: An essential metal in biology. Current Biology, 21, R877–R883. doi: 10.1016/j.cub.2011.09.040
  • Fonseca Guerra, C., Bickelhaupt, F. M., Snijders, J. G., & Baerends, E. J. (2000). Hydrogen bonding in DNA base pairs: Reconciliation of theory and experiment. Journal of the American Chemical Society, 122, 4117–4128. doi: 10.1021/ja993262d
  • Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., … Fox, D. J. (2009) GAUSSIAN 09 (Revision A.02). Wallingford, CT: Gaussian.
  • Gao, Y. G., Sriram, M., & Wang, A. H. (1993). Crystallographic studies of metal ion-DNA interactions: Different binding modes of cobalt(II), copper(II) and barium(II) to N7 of guanines in Z-DNA and a drug-DNA complex. Nucleic Acids Research, 21, 4093–4101.
  • Gil, D. M., Defonsi Lestard M. E., Estévez-Hernández, O., Duque, J., & Reguera, E. (2015). Quantum chemical studies on molecular structure, spectroscopic (IR, Raman, UV–Vis), NBO and Homo–Lumo analysis of 1-benzyl-3-(2-furoyl) thiourea. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 145, 553–562. doi:10.1016/j.saa.2015.02.071
  • Glendening, E. D., Reed, A. E., Carpenter, J. E., & Weinhold, F. (1998). NBO Version 3.1. Irvine, CA: Department of Chemistry, University of California.
  • Grabowski, S. J. (2006). Hydrogen bonding—new insights. Heidelberg: Springer.
  • Grabowski, S. J., Sokalski, W. A., & Leszczynski J. (2005). How short can the H···H intermolecular contact be? New findings that reveal the covalent nature of extremely strong interactions. The Journal of Physical Chemistry A, 109, 4331–4341. doi: 10.1021/jp0444215
  • Guckian, K. M., Krugh, T. R., & Kool, E. T. (2000). Solution structure of a nonpolar, non-hydrogen-bonded base pair surrogate in DNA. Journal of the American Chemical Society, 122, 6841–6847. doi: 10.1021/ja994164v
  • Guo, X., Yuan, H., Zhu, Q., An, B., & Zhang, J. (2016). Ab initio insights on photophysics of 9-methylhypoxanthine. Molecular Physics, 114, 1907–1914. doi:10.1080/00268976.2016.1164348
  • Guo, X., Zhao, Y., & Cao, Z. (2014). A QM/MM MD insight into photodynamics of hypoxanthine: Distinct nonadiabatic decay behaviors between keto-N7H and keto-N9H tautomers in aqueous solution. Physical Chemistry Chemical Physics, 16, 15381–15388. doi: 10.1039/C4CP01928H
  • Harris, V. H., Smith, C. L., Cummins, W. J., Hamilton, A. L., Adams, H., Dickman, M., … Williams D. M. (2003). The effect of tautomeric constant on the specificity of nucleotide incorporation during dna replication: Support for the rare tautomer hypothesis of substitution mutagenesis, Journal of Molecular Biology, 326, 1389–1401. doi:10.1016/S0022-2836(03)00051-2
  • Humphrey, W., Dalke, A. & Schulten, K. (1996). VMD: Visual molecular dynamics. Journal of Molecular Graphics, 14, 33–38. doi:10.1016/0263-7855(96)00018-5
  • Iogansen, A. V. (1999). Direct proportionality of the hydrogen bonding energy and the intensification of the stretching ν(XH) vibration in infrared spectra. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 55, 1585–1612. doi:10.1016/S1386-1425(98)00348-5
  • Kankia, B. I. (2000). Interaction of alkaline–earth metal ions with calf thymus DNA. Volume and compressibility effects in diluted aqueous solutions. Biophysical Chemistry, 84, 227–237. doi:10.1016/S0301-4622(00)00125-3
  • Koch, W., & Holthausen, M. C. (2001). A chemists’s guide to density functional theory (2nd ed.). Weinheim, Federal Republic of Germany: Wiley-VCH Verlag.
  • Kondratyuk, I. V., Samijlenko, S. P., Kolomietś, I. M., & Hovorun, D. M. (2000). Prototropic molecular–zwitterionic tautomerism of xanthine and hypoxanthine. Journal of Molecular Structure, 523, 109–118. doi:10.1016/S0022-2860(99)00385-3
  • Koritsanszky, T. S., & Coppens, P. (2001). Chemical applications of X-ray charge-density analysis. Chemical Reviews, 101, 1583–1628. doi: 10.1021/cr990112c
  • Lippard, S.J., & Berg J.M. (1994). Principles of bioinorganic chemistry. Mill Valley, CA: University Science Books.
  • Lippert, B., & Gupta, D. (2009). Promotion of rare nucleobase tautomers by metal binding. Dalton Transactions, 4619–4634. doi: 10.1039/B823087K
  • Long, E. C. (2009). Metal complex − DNA interactions. The Journal of the American Chemical Society, 131, 14124–14125. doi: 10.1021/ja907261x
  • Lu, T., & Chen, F. (2012). Multiwfn: A multifunctional wavefunction analyzer. Journal of Computational Chemistry, 33, 580–592. doi:10.1002/jcc.22885
  • Masoodi, H. R., Bagheri, S., & Abareghi, M. (2016). The effects of tautomerization and protonation on the adenine–cytosine mismatches: A density functional theory study. Journal of Biomolecular Structure and Dynamics, 34, 1143–1155. doi:10.1080/07391102.2015.1072734
  • Metcalfe, C., & Thomas, J. A. (2003). Kinetically inert transition metal complexes that reversibly bind to DNA. Chemical Society Reviews, 32, 215–224. doi:10.1039/B201945K
  • Nikolaienko, T. Y., Bulavin, L. A., & Hovorun, D. M. (2012). Bridging QTAIM with vibrational spectroscopy: The energy of intramolecular hydrogen bonds in DNA-related biomolecules. Physical Chemistry Chemical Physics, 14, 7441–7447. doi: 10.1039/C2CP40176B
  • Ono, A., Cao, S., Togashi, H., Tashiro, M., Fujimoto, T., Machinami, T., … Tanaka, Y. (2008). Specific interactions between silver(I) ions and cytosine–cytosine pairs in DNA duplexes. Chemical Communications, 4825–4827. doi:10.1039/B808686A
  • Pages, B. J., Ang, D. L., Wright E. P., & Aldrich-Wright, J. R. (2015). Metal complex interactions with DNA. Dalton Transactions, 44, 3505–3526. doi:10.1039/C4DT02700K
  • Pastor, N., MacKerell, A. D., & Weinstein, H. (1999). TIT for TAT: The properties of inosine and -*adenosine in TATA box DNA. Journal of Biomolecular Structure and Dynamics, 16, 787–810. doi:10.1080/07391102.1999.10508293
  • Patro, J. N., Urban, M., & Kuchta R. D. (2009). Interaction of human DNA polymerase α and DNA polymerase I from bacillus stearothermophilus with hypoxanthine and 8-oxoguanine nucleotides. Biochemistry, 48, 8271–8278. doi: 10.1021/bi900777s
  • Pena, M. M., Lee, J., Thiele, D. J. (1999). A delicate balance: Homeostatic control of copper uptake and distribution. Journal of Nutrition, 129, 1251–1260. doi:10.1093/jn/129.7.1251
  • Plekan, O., Feyer, V., Richter, R., Moise, A., Coreno, M., Prince, K. C., … Trofimov, A. B. (2012). X-ray spectroscopy of heterocyclic biochemicals: Xanthine, hypoxanthine, and caffeine. The Journal of Physical Chemistry A, 116, 5653–5664. doi: 10.1021/jp300459p
  • Popelier, P. (2000). Atoms in molecules: an introduction, Prentice Hall, New York.
  • Pushie, M.J., Zhang, L., Pickering, I.J. & George, G.N. (2012). The fictile coordination chemistry of cuprous-thiolate sites in copper chaperones. Biochimica et Biophysica Acta (BBA) – Bioenergetics, 1817, 938–947. doi:10.1016/j.bbabio.2011.10.004
  • Reed, A. E., Curtiss L. A., & Weinhold, F. (1988). Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chemical Reviews, 88, 899–926. doi: 10.1021/cr00088a005
  • Reedijk, J. (2003). New clues for platinum antitumor chemistry: Kinetically controlled metal binding to DNA. Proceedings of the National Academy of Sciences of the United States of America, 100, 3611–3616. doi:10.1073/pnas.0737293100
  • Rimola, A., Constantino, E., Rodríguez-Santiago, L., & Sodupe, M. (2008). Binding properties of Cu+/2+-(glycyl)nglycine complexes (n = 1 − 3). The Journal of Physical Chemistry A, 112, 3444–3453. doi: 10.1021/jp711189s
  • Rozas, I., Alkorta, I., & Elguero, J. (2000). Behavior of ylides containing N, O, and C atoms as hydrogen bond acceptors. Journal of the American Chemical Society, 122, 11154–11161. doi: 10.1021/ja0017864
  • Rutledge, L. R., & Wetmore, S. D. (2012). A computational proposal for the experimentally observed discriminatory behavior of hypoxanthine, a weak universal nucleobase. Physical Chemistry Chemical Physics, 14, 2743–2753. doi:10.1039/C2CP23600A
  • Sanders, J. M., Wampole, M. E., Chen, C-P., Sethi, D., Singh, A., Dupradeau, F-Y., Wang, F., Gray, B. D., Thakur, M. L., & Wickstrom, E. (2013). Effects of hypoxanthine substitution in peptide nucleic acids targeting KRAS2 oncogenic mRNA molecules: Theory and experiment. The Journal of Physical Chemistry B, 117, 11584–11595. doi: 10.1021/jp4064966
  • Shakourian-Fard, M., Fattahi, A., & Bayat, A. (2012). Ionic liquid based on α-amino acid anion and N7,N9-dimethylguaninium cation ([dMG][AA]): Theoretical study on the structure and electronic properties. Journal of Physical Chemistry A, 116, 5436–5444. doi: 10.1021/jp211774y
  • Shukla, M. K., & Leszczynski, J. (2000). Theoretical study of proton transfer in hypoxanthine tautomers: Effects of hydration. The Journal of Physical Chemistry A, 104, 3021–3027. doi: 10.1021/jp9940912
  • Suntharalingam, K., White, A. J. P., & Vilar, R. (2010). Two metals are better than one: investigations on the interactions between dinuclear metal complexes and quadruplex DNA. Inorganic Chemistry, 49, 8371–8380. doi: 10.1021/ic100884p
  • Tsuboi, K., Nose, T., Okinaka, R. T., & Chen, D. J. (1995). Non-radioactive mismatch analysis to detect small mutations in human hypoxanthine-guanine phosphoribosyl transferase cDNA. Japanese Journal of Medical Science and Biology, 48, 163–175. doi:10.7883/yoken1952.48.163
  • Vasilescu, D., & Adrian-Scotto, M. (2010). From Democritus to Schrödinger: A reflection on quantum molecular modeling. Structural Chemistry, 21, 1289–1314. doi: 10.1007/s11224-010-9665-z
  • Watkins, N. E., & Lucia, J. S. (2005). Nearest-neighbor thermodynamics of deoxyinosine pairs in DNA duplexes. Nucleic Acids Research, 33, 6258–6267. doi: 10.1093/nar/gki918
  • Wu, Y., Sa, R., Li, Q., Wei, Y., & Wu, K. (2009). Theoretical studies on the bonding of Cd2+ to adenine and thymine: Tautomeric equilibrium and metalation in base pairing. Chemical Physics Letters, 467, 387–392. doi:10.1016/j.cplett.2008.11.073
  • Xing, D., Tan, X., Chen, X., & Bu, Y. (2008). Theoretical study on the gas-phase acidity of multiple sites of Cu+−adenine and Cu2+−adenine complexes. The Journal of Physical Chemistry A, 112, 7418–7425. doi: 10.1021/jp800256v

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.