255
Views
20
CrossRef citations to date
0
Altmetric
Research Article

Designing potential HDAC3 inhibitors to improve memory and learning

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 2133-2142 | Received 03 Mar 2018, Accepted 02 May 2018, Published online: 10 Dec 2018

References

  • Adhikari, N., Amin, S. A., Saha, A., & Jha, T. (2017). Combating breast cancer with non-steroidal aromatase inhibitors (NSAIs): Understanding the chemico-biological interactions through comparative SAR/QSAR study. European Journal of Medicinal Chemistry, 137, 365–438. doi: 10.1016/j.ejmech.2017.05.041
  • Amin, S. A., Adhikari, N., & Jha, T. (2018). Structure-activity relationships of HDAC8 inhibitors: Non-hydroxamates as anticancer agents. Pharmacological Research, 131, 128–142. doi: 10.1016/j.phrs.2018.03.001
  • Amin, S. A., Adhikari, N., & Jha, T. (2017a). Is dual inhibition of metalloenzymes HDAC-8 and MMP-2 a potential pharmacological target to combat hematological malignancies? Pharmacological Research, 122, 8–19. doi: 10.1016/j.phrs.2017.05.002
  • Amin, S. A., Adhikari, N., & Jha, T. (2017b). Structure-activity relationships of hydroxamate-based HDAC-8 inhibitors: Reality behind anticancer drug discovery. Future Medicinal Chemistry, 9, 2211–2237. doi: 10.4155/fmc-2017-0130
  • Amin, S. A., Adhikari, N., Jha, T., & Gayen, S. (2016). First molecular modeling report on novel arylpyrimidine kynurenine monooxygenase inhibitors through multi-QSAR analysis against Huntington’s disease: A proposal to chemists! Bioorganic & Medicinal Chemistry Letters, 26, 5712–5718. doi: 10.1016/j.bmcl.2016.10.058
  • Amin, S. A., Adhikari, N., Shukla, V., Jha, T., & Gayen, S. (2017). Structural findings of pyrazolo[1,5-a]pyrimidine compounds for their Pim-1/2 kinase inhibition as potential anticancer agents. Indian Journal of Biochemistry and Biophysics, 54, 32–46.
  • Balasubramanian, S., Verner, E., & Buggy, J. J. (2009). Isoform-specific histone deacetylase inhibitors: The next step? Cancer Letters, 280, 211–221. doi: 10.1016/j.canlet.2009.02.013
  • Broide, R. S., Redwine, J. M., Aftahi, N., Young, W., Bloom, F. E., & Winrow, C. J. (2007). Distribution of histone deacetylases 1–11 in the rat brain. Journal of Molecular Neuroscience, 31, 47–58. doi: 10.1385/JMN/31:01:47
  • Buolamwini, J. K., & Assefa, H. (2002). CoMFA and CoMSIA 3D QSAR and docking studies on conformationally-restrained cinnamoyl HIV-1 integrase inhibitors: Exploration of a binding mode at the active site. Journal of Medicinal Chemistry, 45, 841–852. doi: 10.1021/jm010399h
  • Chem Draw Ultra 8.0. (2015). Cambridge Soft Corporation, Boston, MA. Retrieved from http://www.cambridgesoft.com
  • Chen, Y., He, R., Chen, Y., D’Annibale, M. A., Langley, B., & Kozikowski, A. P. (2009). Studies of benzamide- and thiol-based histone deacetylase inhibitors in models of oxidative-stress- induced neuronal death: Identification of some hdac3- selective inhibitors. ChemMedChem, 4, 842–852. doi: 10.1002/cmdc.200800461
  • Chirico, N., & Gramatica, P. (2011). Real external predictivity of QSAR models: How to evaluate it? Comparison of different validation criteria and proposal of using the concordance correlation coefficient. Journal of Chemical Information & Modeling, 51, 2320–2335. doi: 10.1021/ci200211n
  • Chuang, D. M., Leng, Y., Marinova, Z., Kim, H. J., & Chiu, C. T. (2009). Multiple roles of HDAC inhibition in neurodegenerative conditions. Trends in Neurosciences, 32, 591–601. doi: 10.1016/j.tins.2009.06.002
  • Clark, M., Cramer, R. D., & Van Opdenbosch, N. (1989). Validation of the general purpose tripos 5.2 force field. Journal of Computational Chemistry, 10, 982–1012. doi: 10.1002/jcc.540100804
  • Cramer, R. D. (2012). The inevitable QSAR renaissance. Journal of Computer-Aided Molecular Design, 26, 35–38. doi: 10.1007/s10822-011-9495-0
  • Dietz, K. C., & Casaccia, P. (2010). HDAC inhibitors and neurodegeneration: At the edge between protection and damage. Pharmacological Research, 62, 11–17. doi: 10.1016/j.phrs.2010.01.011
  • Discovery Studio 3.0 (DS 3.0), Accelrys Inc., San Diego, CA. 2015. Software. Retrieved from ttp://www.accelrys.com
  • Durham, B. (2012). Novel histone deacetylase (HDAC) inhibitors with improved selectivity for HDAC2 and 3 protect against neural cell death. Bioscince Horizons, 5, 1–7. doi: 10.1093/biohorizons/hzs003
  • Fischer, A., Sananbenesi, F., Mungenast, A., & Tsai, L. H. (2010). Targeting the correct HDAC(s) to treat cognitive disorders. Trends in Pharmacological Sciences, 31, 605–617. doi: 10.1016/j.tips.2010.09.003
  • Gasteiger, J., & Marsili, M. (1980). Iterative partial equalization of orbital electronegativity-a rapid access to atomic charges. Tetrahedron, 36, 3219–3228. doi: 10.1016/0040-4020(80)80168-2.
  • Gohlke, H., & Klebe, G. (2002). Drug score meets CoMFA: Adaptation of fields for molecular comparison (AFMoC) or how to tailor knowledge-based pair-potentials to a particular protein. Journal Medicinal Chemistry, 45, 4153–4170. doi: 10.1021/jm020808p
  • Gräff, J., & Tsai, L. H. (2013). The potential of HDAC inhibitors as cognitive enhancers. Annual Review of Pharmacology and Toxicology, 53, 311–330. doi: 10.1146/annurev-pharmtox-011112-140216
  • Guenther, M. G., Barak, O., & Lazar, M. A. (2001). The SMRT and N-CoR corepressors are activating cofactors for histone deacetylase 3. Molecular and Cellular Biology, 21, 6091–6101. doi: 10.1128/MCB.21.18.6091-6101.2001
  • Guenther, M. G., Lane, W. S., Fischle, W., Verdin, E., Lazar, M. A., Shiekhattar, R. (2000). A core SMRT corepressor complex containing HDAC3 and TBL1, a WD40-repeat protein linked to deafness. Genes & Development, 14, 1048–1057. doi: 10.1101/gad.14.9.1048
  • Haberland, M., Montgomery, R. L., & Olson, E. N. (2009). The many roles of histone deacetylases in development and physiology: Implications for disease and therapy. Nature Reviews Genetics, 10, 32–42. doi: 10.1038/nrg2485
  • Haggarty, S. J., & Tsai, L. H. (2011). Probing the role of HDACs and mechanisms of chromatin-mediated neuroplasticity. Neurobiology of Learning and Memory, 96, 41–52. doi: 10.1016/j.nlm.2011.04.009
  • Hansch, C., Maloney, P., Fujita, T., & Muir, R. (1962). Correlation of biological activity of phenoxyacetic acids with Hammett substituent constants and partition coefficients. Nature, 194, 178–180. doi: 10.1038/194178b0
  • Hawk, J. D., Florian, C., & Abel, T. (2011). Post-training intrahippocampal inhibition of class I histone deacetylases enhances long-term object-location memory. Learning & Memory, 18, 367–370. doi: 10.1101/lm.2097411
  • Hsieh, H. Y., Chuang, H. C., Shen, F. H., Detroja, K., Hsin, L. W., & Chen, C. S. (2017). Targeting breast cancer stem cells by novel HDAC3-selective inhibitors. European Journal of Medicinal Chemistry, 140, 42–51. doi: 10.1016/j.ejmech.2017.08.069
  • The rm2 metrics was calculated by online tool (https://sites.google.com/site/rm2forqsarvalidation/). 2018. Retrieved April 15, 2018.
  • Jia, H., Pallos, J., Jacques, V., Lau, A., Tang, B., Cooper, A.,… Sangrey, G. R. (2012). Histone deacetylase (HDAC) inhibitors targeting HDAC3 and HDAC1 ameliorate polyglutamine-elicited phenotypes in model systems of Huntington’s disease. Neurobiology of Disease, 46, 351–361. doi: 10.1016/j.nbd.2012.01.016
  • Jia, H., Wang, Y., Morris, C. D., Jacques, V., Gottesfeld, J. M., Rusche, J. R., & Thomas, E. A. (2016). The effects of pharmacological inhibition of histone deacetylase 3 (HDAC3) in Huntington’s disease mice. PLoS One, 11, e0152498. doi: 10.1371/journal.pone.0152498
  • Klebe, G., Abraham, U., & Mietzner, T. (1994). Molecular similarity indices in a comparative analysis (CoMSIA) of drug molecules to correlate and predict their biological activity. Journal of Medicinal Chemistry, 37, 4130–4146. doi: 10.1021/jm00050a010
  • Klon, A. E., Lowrie, J. F., & Diller, D. J. (2006). Improved naïve bayesian modeling of numeriacl data for absorption, destribution, metabolism and excretion (ADME) property prediction. Journal of Chemical Information & Modeling, 46, 1945–1956. doi: 10.1021/ci0601315
  • Kubinyi, H. (2002). Comparative molecular field analysis (CoMFA). Encyclopedia of computational chemistry. New York, NY: Wiley. doi: 10.1002/0470845015.cca030
  • Levenson, J. M., O’Riordan, K. J., Brown, K. D., Trinh, M. A., Molfese, D. L., & Sweatt, J. D. (2004). Regulation of histone acetylation during memory formation in the hippocampus. Journal of Biological Chemistry, 279, 40545–40559. doi: 10.1074/jbc.M402229200
  • Li, X., Inks, E. S., Li, X., Hou, J., Chou, C. J., Zhang, J.,… Xu, W. (2014). Discovery of the first N-hydroxycinnamamide-based histone deacetylase 1/3 dual inhibitors with potent oral antitumor activity. Journal of Medicinal Chemistry, 57, 3324–3341. doi: 10.1021/jm401877m
  • Li, X., Zhang, Y., Jiang, Y., Wu, J., Inks, E. S., Chou, C. J.,… Wang, X. (2017). Selective HDAC inhibitors with potent oral activity against leukemia and colorectal cancer: Design, structure-activity relationship and anti-tumor activity study. European Journal of Medicinal Chemistry, 134, 185–206. doi: 10.1016/j.ejmech.2017.03.069
  • Liu, L. L., Lu, J., Lu, Y., Zheng, M. Y., Luo, X. M., Zhu, W. L.,… Chen, K. X. (2014). Novel Bayesian classification models for predicting compounds blocking hERG potassium channels. Acta Pharmacologica Sinica, 35, 1093–1102. doi: 10.1038/aps.2014.35
  • Mahalakshmi, R., Husayn Ahmed, P., & Mahadevan, V. (2018). HDAC inhibitors show differential epigenetic regulation and cell survival strategies on p53 mutant colon cancer cells. Journal of Biomolecular Structure & Dynamics, 36, 938–955. doi: 10.1080/07391102.2017.1302820.
  • Malvaez, M., McQuown, S. C., Rogge, G. A., Astarabadi, M., Jacques, V., Carreiro, S.,… Wood, M. A. (2013). HDAC3-selective inhibitor enhances extinction of cocaine-seeking behavior in a persistent manner. Proceedings of the National Academy of Sciences of the United States of America, 110, 2647–2652. doi: 10.1073/pnas.1213364110
  • Marson, C. M., Matthews, C. J., Atkinson, S. J., Lamadema, N., & Thomas, N. S. B. (2015). Potent and selective inhibitors of histone deacetylase-3 containing chiral oxazoline capping groups and a N-(2-aminophenyl)-benzamide binding unit. Journal of Medicinal Chemistry, 58, 6803–6818. doi: 10.1021/acs.jmedchem.5b00545
  • Marson, C. M., Matthews, C. J., Yiannaki, E., Atkinson, S. J., Soden, P. E., Shukla, L.,… Thomas, N. S. B. (2013). Discovery of potent, isoform-selective inhibitors of histone deacetylase containing chiral heterocyclic capping groups and a N-(2-aminophenyl) benzamide binding unit. Journal of Medicinal Chemistry, 56, 6156–6174. doi: 10.1021/jm400634n
  • Mazitschek, R., Hideshima, T., Anderson, K. C., Haggarty, S. J., Ghosh, B. (2015.) Inhibitors of histone deacetylase. Patent No. WO 2015069693 A1.
  • McQuown, S. C., & Wood, M. A. (2011). HDAC3 and the molecular brake pad hypothesis. Neurobiology of Learning and Memory, 96, 27–34. doi: 10.1016/j.nlm.2011.04.002
  • McQuown, S. C., Barrett, R. M., Matheos, D. P., Post, R. J., Rogge, G. A., Alenghat, T.,… Wood, M. A. (2011). HDAC3 is a critical negative regulator of long-term memory formation. Journal of Neuroscience, 31, 764–774. doi: 10.1523/JNEUROSCI.5052-10.2011
  • Methot, J. L., Chakravarty, P. K., Chenard, M., Close, J., Cruz, J. C., Dahlberg, W. K.,… Miller, T. A. (2008a). Exploration of the internal cavity of histone deacetylase (HDAC) with selective HDAC1/HDAC2 inhibitors (SHI-1:2). Bioorganic & Medicinal Chemistry Letters, 18, 973–978. doi: 10.1016/j.bmcl.2007.12.031
  • Methot, J. L., Hamblett, C. L., Mampreian, D. M., Jung, J., Harsch, A., Szewczak, A. A.,… Miller, T. A. (2008b). SAR profiles of spirocyclic nicotinamide derived selective HDAC1/HDAC2 inhibitors (SHI-1:2). Bioorganic & Medicinal Chemistry Letters, 18, 6104–6109. doi: 10.1016/j.bmcl.2008.10.052
  • Minami, J., Suzuki, R., Mazitschek, R., Gorgun, G., Ghosh, B., Cirstea, D.,… Anderson, K. C. (2014). Histone deacetylase 3 as a novel therapeutic target in multiple myeloma. Leukemia, 28, 680–689. doi: 10.1038/leu.2013.231
  • New, M., Olzscha, H., & La Thangue N. B. (2012). HDAC inhibitor-based therapies: Can we interpret the code? Molecular Oncology, 6, 637–656. doi: 10.1016/j.molonc.2012.09.003
  • Norwood, J., Franklin, J. M., Sharma, D., & D’Mello, S. R. (2014). Histone deacetylase 3 is necessary for proper brain development. Journal of Biological Chemistry, 289, 34569–34582. doi: 10.1074/jbc.M114.576397
  • Pourbasheer, E., Aalizadeh, R., Shokouhi, T. S., Ganjali, M. R., Norouzi, P., & Shadmanesh, J. (2014). 2D and 3D quantitative structure–activity relationship study of hepatitis C virus NS5B polymerase inhibitors by comparative molecular field analysis and comparative molecular similarity indices analysis methods. Journal of Chemical Information & Modeling, 54, 2902–2914. doi: 10.1021/ci500216c
  • Roche, J., & Bertrand, P. (2016). Inside HDACs with more selective HDAC inhibitors. European Journal of Medicinal Chemistry, 121, 451–483. doi: 10.1016/j.ejmech.2016.05.047
  • Rogers, D., Brown, R. D., & Hahn, M. (2005). Using extended-connectivity fingerprints with Laplacian-modified Bayesian analysis in high-throughput screening follow-up. Journal of Biomolecular Screening, 10, 682–686. doi: 10.1177/1087057105281365
  • Sinha, S., Tyagi, C., Goyal, S., Jamal, S., Somvanshi, P., & Grover, A. (2016). Fragment based G-QSAR and molecular dynamics based mechanistic simulations into hydroxamic-based HDAC inhibitors against spinocerebellar ataxia. Journal of Biomolecular Structure & Dynamics, 34, 2281–2295. doi: 10.1080/07391102.2015.1113386.
  • Sixto-López, Y., Bello, M., & Correa-Basurto, J. (2018). Insights into structural features of HDAC1 and its selectivity inhibition elucidated by Molecular dynamic simulation and Molecular Docking. Journal of Biomolecular Structure & Dynamics, 1–27. doi: 10.1080/07391102.2018.1441072
  • Sharma, R., Dhingra, N., & Patil, S. (2016). CoMFA, CoMSIA, HQSAR and molecular docking analysis of ionone-based chalcone derivatives as antiprostate cancer activity. Indian Journal of Pharmaceutical Sciences, 78, 54–64.
  • Srivastava, V., Gupta, S. P., Siddiqi, M. I., & Mishra, B. N. (2010). 3D-QSAR studies on quinazoline antifolate thymidylate synthase inhibitors by CoMFA and CoMSIA models. European Journal of Medicinal Chemistry, 45, 1560–1571. doi: 10.1016/j.ejmech.2009.12.065
  • Suzuki, T., Kasuya, Y., Itoh, Y., Ota, Y., Zhan, P., Asamitsu, K.,… Miyata, N. (2013). Identification of highly selective and potent histone deacetylase 3 inhibitors using click chemistry-based combinatorial fragment assembly. PLoS One, 8, e68669. doi: 10.1371/journal.pone.0068669
  • SYBYL-X 2.0. (2015). Certara Inc., Princeton, NJ. Retrieved from http://www.certara.com
  • Uba, A. I., & Yelekçi, K. (2017). Identification of potential isoform-selective histone deacetylase inhibitors for cancer therapy: A combined approach of structure-based virtual screening, ADMET prediction and molecular dynamics simulation assay. Journal of Biomolecular Structure & Dynamics, 1–15. doi: 10.1080/07391102.2017.1384402
  • Viswanadhan, V. N., Ghose, A. K., Revankar, G. R., & Robins, R. K. (1989). Atomic physicochemical parameters for three dimensional structure directed quantitative structure-activity relationships. 4. Additional parameters for hydrophobic and dispersive interactions and their application for an automated superposition of certain naturally occurring nucleoside antibiotics. Journal of Chemical Information & Modeling, 29, 163–172. doi: 10.1021/ci00063a006
  • Wagner, F. F., Lundh, M., Kaya, T., McCarren, P., Zhang, Y. L., Chattopadhyay, S.,… Holson, E. B. (2016). An isochemogenic set of inhibitors to define the therapeutic potential of histone deacetylases in β-cell protection. ACS Chemical Biology, 11, 363–374. doi: 10.1021/acschembio.5b00640
  • Watson, P. J., Fairall, L., Santos, G. M., & Schwabe, J. W. (2012). Structure of HDAC3 bound to co-repressor and inositol tetraphosphate. Nature, 481, 335. doi: 10.1002/pro.2190
  • Wen, Y. D., Perissi, V., Staszewski, L. M., Yang, W. M., Krones, A., Glass, C. K.,… Seto, E. (2000). The histone deacetylase-3 complex contains nuclear receptor corepressors. Proceedings of the National Academy of Sciences of the United States of America, 97, 7202–7207. doi: 10.1073/pnas.97.13.7202
  • White, A. O., & Wood, M. A. (2014). Does stress remove the HDAC brakes for the formation and persistence of long-term memory? Neurobiology of Learning and Memory, 112, 61–67. doi: 10.1016/j.nlm.2013.10.007
  • Zhang, H., Kang, Y. L., Zhu, Y. Y., Zhao, K. X., Liang, J. Y., Ding, L.,… Zhang, J. (2017). Novel naïve Bayes classification models for predicting the chemical Ames mutagenicity. Toxicology in Vitro. 41, 56–63. doi: 10.1016/j.tiv.2017.02.016
  • Zhang, L., & Zhang, L. (2016). Molecular simulation of HDAC1/3 inhibitor: Insights into the structural basis of selectivity. Letters in Drug Design & Discovery, 13, 43–46. doi: 10.2174/1570180812666150630183816
  • Zhang, L., Zhang, Y., Chou, C. J., Inks, E. S., Wang, X., Li, X.,… Xu, W. (2014). Histone deacetylase inhibitors with enhanced enzymatic inhibition effects and potent in vitro and in vivo antitumor activities. ChemMedChem, 9, 638–648. doi: 10.1002/cmdc.201300297
  • Zhang, X., Kong, Y., Zhang, J., Su, M., Zhou, Y., Zhang, Y.,… Lu, W. (2015). Design, synthesis and biological evaluation of colchicine derivatives as novel tubulin and histone deacetylase dual inhibitors. European Journal of Medicinal Chemistry, 95, 127–135. doi: 10.1016/j.ejmech.2015.03.035

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.