506
Views
26
CrossRef citations to date
0
Altmetric
Research Article

Exploring dengue proteome to design an effective epitope-based vaccine against dengue virus

, , , &
Pages 2546-2563 | Received 02 Feb 2018, Accepted 01 Jun 2018, Published online: 17 Nov 2018

  • Andreatta, M., & Nielsen, M. (2016). Gapped sequence alignment using artificial neural networks: application to the MHC class I system. Bioinformatics, 32, 511–517.
  • Amexis, G., & Young, N. S. (2007). Multiple antigenic peptides as vaccine platform for the induction of humoral responses against dengue-2 virus. Viral Immunology, 20, 657–663.
  • Amorim, J. H., Diniz, M. O., Cariri, F. A., Rodrigues, J. F., Bizerra, R. S. P., Gonçalves, A. J., & de Souza Ferreira, L. C. (2012). Protective immunity to DENV2 after immunization with a recombinant NS1 protein using a genetically detoxified heat-labile toxin as an adjuvant. Vaccine, 30, 837–845.
  • Azmi, F., Ahmad Fuaad, A. A. H., Skwarczynski, M., & Toth, I. (2014). Recent progress in adjuvant discovery for peptide-based subunit vaccines. Human Vaccines & Immunotherapeutics, 10, 778–796.
  • Barone, D., Balasco, N., Autiero, I., & Vitagliano, L. (2017). The dynamic properties of the hepatitis C virus E2 envelope protein unraveled by molecular dynamics. Journal of Biomolecular Structure and Dynamics, 35, 805–816.
  • Baseer, S., Ahmad, S., Ranaghan, K. E., & Azam, S. S. (2017). Towards a peptide-based vaccine against Shigella sonnei: A subtractive reverse vaccinology based approach. Biologicals, 50, 87–99
  • Bernstein, F. C., Koetzle, T. F., Williams, G. J., Meyer, E. F., Brice, M. D., Rodgers, J. R., & Tasumi, M. (1977). The protein data bank. A computer-based archival file for macromolecular structures FEBS. European Journal of Biochemistry, 80, 319–324.
  • Bhardwaj, N., Gnjatic, S., & Sawhney, N. B. (2010). TLR Toll-like receptor agonists: Are they good adjuvants? Cancer journal (Sudbury, Mass.), 16, 382.
  • Bhasin, M., & Raghava, G. (2004). Prediction of CTL epitopes using QM, SVM and ANN techniques. Vaccine, 22, 3195–3204.
  • Bienert, S., Waterhouse, A., de Beer, T. A., Tauriello, G., Studer, G., Bordoli, L., & Schwede, T. (2016). The SWISS-MODEL repository-new features and functionality. Nucleic Acids Res, 45, D313–D319.
  • Bui, H.-H., Sidney, J., Li, W., Fusseder, N., & Sette, A. (2007). Development of an epitope conservancy analysis tool to facilitate the design of epitope-based diagnostics and vaccines. BMC bioinformatics, 8(1), p. 361.
  • Calis, J. J., Maybeno, M., Greenbaum, J. A., Weiskopf, D., De Silva, A. D., Sette, A., & Peters, B. (2013). Properties of MHC class I presented peptides that enhance immunogenicity. PLOS Computational Biology, 9, e1003266.
  • Chen, H.-F., Yu, C.-Y., Chen, M.-J., Chou, S.-H., Chiang, M.-S., Chou, W.-H., … Ho, H.-N. (2015). Characteristic expression of major histocompatibility complex and immune privilege genes in human pluripotent stem cells and their derivatives. Cell Transplant, 24, 845–864.
  • Christian, E. A., Kahle, K. M., Mattia, K., Puffer, B. A., Pfaff, J. M., Miller, A., & Doranz, B. J. (2013). Atomic-level functional model of dengue virus Envelope protein infectivity. Proceedings of the National Academy of Science of the United States of America, 110, 18662–18667.
  • Colovos, C., & Yeates, T. O. (1993). Verification of protein structures: Patterns of nonbonded atomic interactions. Protein Science, 2, 1511–1519. doi:10.1002/pro.5560020916
  • Connell, T. D. (2007). Cholera toxin, LT-I, LT-IIa, and LT-IIb: The critical role of ganglioside-binding in immunomodulation by type I and type II heat-labile enterotoxins. Expert Review of Vaccines, 6, 821–834. doi:10.1586/14760584.6.5.821. Retrieved from http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2849181/
  • Cook, G. C., & Zumla, A. (2008). Manson's tropical diseases (22nd ed.). Philadelphia, US: Elsevier Health Sciences.
  • Depla, E., Van der Aa, A., Livingston, B. D., Crimi, C., Allosery, K., De Brabandere, V., … Power, S. (2008). Rational design of a multiepitope vaccine encoding T-lymphocyte epitopes for treatment of chronic hepatitis B virus infections. Journal of Virology, 82(1), 435–450.
  • Diaz, A. A., Tomba, E., Lennarson, R., Richard, R., Bagajewicz, M. J., & Harrison, R. G. (2010). Prediction of protein solubility in Escherichia coli using logistic regression. Biotechnology and Bioengineering, 105, 374–383.
  • Dimitrov, I., Garnev, P., Flower, D. R., & Doytchinova, I. (2010). EpiTOP-a proteochemometric tool for MHC class II binding prediction. Bioinformatics, 26, 2066–2068.
  • Dimitrov, I., Naneva, L., Doytchinova, I., & Bangov, I. (2014). AllergenFP: Allergenicity prediction by descriptor fingerprints. Bioinformatics, 30, 846–851. Retrieved from http://dx.doi.org/10.1093/bioinformatics/btt619
  • dos Santos Alves, R. P., Pereira, L. R., Fabris, D. L. N., Salvador, F. S., Santos, R. A., de Andrade Zanotto, P. M., & de Souza Ferreira, L. C. (2016). Production of a recombinant dengue virus 2 NS5 protein and potential use as a vaccine antigen. Clinical and Vaccine Immunology, 23, 460–469.
  • Doytchinova, I. A., & Flower, D. R. (2007). Identifying candidate subunit vaccines using an alignment-independent method based on principal amino acid properties. Vaccine, 25, 856–866.
  • Duthie, M. S., Windish, H. P., Fox, C. B., & Reed, S. G. (2011). Use of defined TLR ligands as adjuvants within human vaccines. Immunological Reviews, 239(1), 178–196.
  • Eisenberg, D., Lüthy, R., & Bowie, J. U. (1997). VERIFY3D: Assessment of protein models with three-dimensional profiles. Methods in enzymology, 277, 396–404.
  • Fahimi, H., Sadeghizadeh, M., & Mohammadipour, M. (2016). In silico analysis of an envelope domain III-based multivalent fusion protein as a potential dengue vaccine candidate. Clinical and Experimental Vaccine Research, 5(1), 41–49. Retrieved from http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4742598/
  • Fajardo-Sánchez, E., Galiano, V., & Villalaín, J. (2017). Molecular dynamics study of the membrane interaction of a membranotropic dengue virus C protein-derived peptide. Journal of Biomolecular Structure and Dynamics, 35, 1283–1294.
  • Farhadi, T., & Ranjbar, M. M. (2017). Designing and modeling of complex DNA vaccine based on MOMP of Chlamydia trachomatis: An in silico approach. Network Modeling Analysis in Health Informatics and Bioinformatics, 6(1), 1.
  • Fleith, R. C., Lobo, F. P., dos Santos, P. F., Rocha, M. M., Bordignon, J., Strottmann, D. M., … Mansur, D. S. (2016). Genome-wide analyses reveal a highly conserved dengue virus envelope peptide which is critical for virus viability and antigenic in humans. Nature, 6, 36339. Retrieved from http://dx.doi.org/10.1038/srep36339
  • Gasteiger, E., Hoogland, C., Gattiker, A., Duvaud, S., Wilkins, M.R., Appel, R.D., & Bairoch, A. (2005) Protein identification and analysis tools on the ExPASy server. In The Proteomics Protocols Handbook, edited by J. M. Walker. (pp. 571–607). Totowa, USA: Humana Press.
  • Ghosh, A., & Dar, L. (2015). Dengue vaccines: Challenges, development, current status and prospects. Indian Journal of Medical Microbiology, 33(1), 3.
  • Gupta, S., Kapoor, P., Chaudhary, K., Gautam, A., Kumar, R., Raghava, G. P., & Consortium, O. S. D. D. (2013). In silico approach for predicting toxicity of peptides and proteins. PLoS One, 8, e73957.
  • Gutjahr, A., Tiraby, G., Perouzel, E., Verrier, B., & Paul, S. (2016). Triggering intracellular receptors for vaccine adjuvantation. Trends in Immunology, 37, 573–587.
  • Guy, B., & Jackson, N. (2016). Dengue vaccine: Hypotheses to understand CYD-TDV-induced protection. Nature Reviews Microbiology, 14(1), 45.
  • Hajishengallis, G., & Connell, T. D. (2013). Type II heat-labile enterotoxins: Structure, function, and immunomodulatory properties. Veterinary Immunology and Immunopathology, 152(1), 68–77.
  • Hamza, A., Kebaier, C., Vasilescu, D., Sarma, M., & Sarma, R. (2003). Molecular modeling of a Leishmania antigen eIF-4A: Identification of a potential epitope implicated in the adjuvant effect. Journal of Biomolecular Structure and Dynamics, 21(1), 43–53.
  • Heo, L., Park, H., & Seok, C. (2013). GalaxyRefine: Protein structure refinement driven by side-chain repacking. Nucleic Acids Research, 41, W384–W388. doi:10.1093/nar/gkt458
  • Hertz, T., Beatty, P. R., MacMillen, Z., Killingbeck, S. S., Wang, C., & Harris, E. (2017). Antibody epitopes identified in critical regions of dengue virus nonstructural 1 protein in mouse vaccination and natural human infections. Journal of Immunology, 198, 4025–4035.
  • Hussain, M., Idrees, M., & Afzal, S. (2015). Development of global consensus of dengue virus envelope glycoprotein for epitopes based vaccine design. Current Computer-Aided Drug Design, 11(1), 84–97.
  • Ishikawa, T., Yamanaka, A., & Konishi, E. (2014). A review of successful flavivirus vaccines and the problems with those flaviviruses for which vaccines are not yet available. Vaccine, 32, 1326–1337. Retrieved from http://www.sciencedirect.com/science/article/pii/S0264410X14000747
  • Jiang, L., Zhou, J.-M., Yin, Y., Fang, D.-Y., Tang, Y.-X., & Jiang, L.-F. (2010). Selection and identification of B-cell epitope on NS1 protein of dengue virus type 2. Virus Research, 150, 49–55.
  • Jin, M. S., Kim, S. E., Heo, J. Y., Lee, M. E., Kim, H. M., Paik, S.-G., … Lee, J.-O. (2007). Crystal structure of the TLR1-TLR2 heterodimer induced by binding of a tri-acylated lipopeptide. Cell, 130, 1071–1082.
  • Källberg, M., Wang, H., Wang, S., Peng, J., Wang, Z., Lu, H., & Xu, J. (2012). Template-based protein structure modeling using the RaptorX web server. Nature Protocols, 7, 1511–1522. Retrieved from http://dx.doi.org/10.1038/nprot.2012.085
  • Kelley, L. A., Mezulis, S., Yates, C. M., Wass, M. N., & Sternberg, M. J. E. (2015). The Phyre2 web portal for protein modeling, prediction and analysis. Nature Protocols, 10, 845–858. Retrieved from http://dx.doi.org/10.1038/nprot.2015.053
  • Ko, J., Park, H., Heo, L., & Seok, C. (2012). GalaxyWEB server for protein structure prediction and refinement. Nucleic Acids Research, 40, W294–W297. doi:10.1093/nar/gks493
  • Kringelum, J. V., Lundegaard, C., Lund, O., & Nielsen, M. (2012). Reliable B cell epitope predictions: Impacts of method development and improved benchmarking. PLoS Computational Biology, 8, p e1002829.
  • Krogh, A., Larsson, B., von Heijne, G., & Sonnhammer, E. L. (2001). Predicting transmembrane protein topology with a hidden Markov model: Application to complete genomes. Journal of Molecular Biology, 305, 567–580. doi:10.1006/jmbi.2000.4315
  • Kuno, G. (2009). Emergence of the severe syndrome and mortality associated with dengue and dengue-like illness: Historical records (1890 to 1950) and their compatibility with current hypotheses on the shift of disease manifestation. Clinical Microbiology Reviews, 22, 186–201.
  • Lai, C.-Y., Tsai, W.-Y., Lin, S.-R., Kao, C.-L., Hu, H.-P., King, C.-C., … Wang, W.-K. (2008). Antibodies to envelope glycoprotein of dengue virus during the natural course of infection are predominantly cross-reactive and recognize epitopes containing highly conserved residues at the fusion loop of domain II. Journal of Virology, 82, 6631–6643. Retrieved from http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2447043/
  • Laskowski, R. A., MacArthur, M. W., Moss, D. S., & Thornton, J. M. (1993). PROCHECK: A program to check the stereochemical quality of protein structures. Journal of Applied Crystallography, 26, 283–291.
  • Li, X., Guo, L., Kong, M., Su, X., Yang, D., Zou, M., … Lu, L. (2015). Design and evaluation of a multi-epitope peptide of human metapneumovirus. Intervirology, 58, 403–412.
  • Liang, S., & Hajishengallis, G. (2010). Heat-labile enterotoxins as adjuvants or anti-inflammatory agents. Immunological Investigations, 39, 449–467. Retrieved from http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2819675/
  • Livingston, B., Crimi, C., Newman, M., Higashimoto, Y., Appella, E., Sidney, J., & Sette, A. (2002). A rational strategy to design multiepitope immunogens based on multiple Th lymphocyte epitopes. Journal of Immunology, 168, 5499–5506.
  • Lundegaard, C., Lund, O., Buus, S., & Nielsen, M. (2010). Major histocompatibility complex class I binding predictions as a tool in epitope discovery. Immunology, 130, 309–318. Retrieved from http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2913210/
  • Ma, Y. (2016). Recent advances in nontoxic Escherichia coli heat-labile toxin and its derivative adjuvants. Expert Reviews of Vaccines, 15, 1361–1371.
  • Magnan, C. N., Zeller, M., Kayala, M. A., Vigil, A., Randall, A., Felgner, P. L., & Baldi, P. (2010). High-throughput prediction of protein antigenicity using protein microarray data. Bioinformatics, 26, 2936–2943.
  • Maisonneuve, C., Bertholet, S., Philpott, D. J., & De Gregorio, E. (2014). Unleashing the potential of NOD- and Toll-like agonists as vaccine adjuvants. Proceedings of the National Academy of Sciences of the United States of America, 111, 12294–12299.
  • Mashiach, E., Schneidman-Duhovny, D., Andrusier, N., Nussinov, R., & Wolfson, H. J. (2008). FireDock: A web server for fast interaction refinement in molecular docking. Nucleic Acids Research, 36, W229–W232. doi:10.1093/nar/gkn186
  • Mathew, A., Kurane, I., Green, S., Stephens, H. A. F., Vaughn, D. W., Kalayanarooj, S., … Rothman, A. L. (1998). Predominance of HLA-restricted cytotoxic T-lymphocyte responses to serotype-cross-reactive epitopes on nonstructural proteins following natural secondary dengue virus infection. Journal of Virology, 72, 3999–4004. Retrieved from http://www.ncbi.nlm.nih.gov/pmc/articles/PMC109627/
  • Murray, N. E. A., Quam, M. B., & Wilder-Smith, A. (2013). Epidemiology of dengue: Past, present and future prospects. Clinical Epidemiology, 5, 299–309.
  • Muthusamy, K., Gopinath, K., & Nandhini, D. (2016). Computational prediction of immunodominant antigenic regions & potential protective epitopes for dengue vaccination. Indian Journal of Medical Microbiology, 144, 587.
  • Muzio, M., Polentarutti, N., Bosisio, D., Prahladan, M. K. P., & Mantovani, A. (2000). Toll‐like receptors: A growing family of immune receptors that are differentially expressed and regulated by different leukocytes. Journal of Leukocyte Biology, 67, 450–456.
  • Naz, A., Awan, F. M., Obaid, A., Muhammad, S. A., Paracha, R. Z., Ahmad, J., & Ali, A. (2015). Identification of putative vaccine candidates against Helicobacter pylori exploiting exoproteome and secretome: A reverse vaccinology based approach. Infection, Genetics and Evolution, 32, 280–291.
  • Negahdaripour, M., Eslami, M., Nezafat, N., Hajighahramani, N., Ghoshoon, M. B., Shoolian, E., … Ghasemi, Y. (2017). A novel HPV prophylactic peptide vaccine, designed by immunoinformatics and structural vaccinology approaches. Infection, Genetics and Evolution, 54, 402–416.
  • Negahdaripour, M., Golkar, N., Hajighahramani, N., Kianpour, S., Nezafat, N., & Ghasemi, Y. (2017). Harnessing self-assembled peptide nanoparticles in epitope vaccine design. Biotechnology Advances, 35, 75–596.
  • Nezafat, N., Eslami, M., Negahdaripour, M., Rahbar, M. R., & Ghasemi, Y. (2017). Designing an efficient multi-epitope oral vaccine against Helicobacter pylori using immunoinformatics and structural vaccinology approaches. Molecular BioSystems, 13, 699–713.
  • Nezafat, N., Ghasemi, Y., Javadi, G., Khoshnoud, M. J., & Omidinia, E. (2014). A novel multi-epitope peptide vaccine against cancer: An in silico approach. Journal of Theoretical Biology, 349, 121–134.
  • Nezafat, N., Karimi, Z., Eslami, M., Mohkam, M., Zandian, S., & Ghasemi, Y. (2016). Designing an efficient multi-epitope peptide vaccine against Vibrio cholerae via combined immunoinformatics and protein interaction based approaches. Computational Biology and Chemistry, 62, 82–95.
  • Nezafat, N., Sadraeian, M., Rahbar, M. R., Khoshnoud, M. J., Mohkam, M., Gholami, A., … Ghasemi, Y. (2015). Production of a novel multi-epitope peptide vaccine for cancer immunotherapy in TC-1 tumor-bearing mice. Biologicals, 43(1), 11–17. doi:10.1016/j.biologicals.2014.11.001
  • Oyarzún, P., & Kobe, B. (2016). Recombinant and epitope-based vaccines on the road to the market and implications for vaccine design and production. Human Vaccines and Immunotherapeutics, 12, 763–767. Retrieved from http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4964635/
  • Parra-López, C., Calvo-Calle, J. M., Cameron, T. O., Vargas, L. E., Salazar, L. M., Patarroyo, M. E., … Stern, L. J. (2006). Major histocompatibility complex and T cell interactions of a universal T cell epitope from Plasmodium falciparum circumsporozoite protein. Journal of Biological Chemistry, 281, 14907–14917.
  • Pasare, C., & Medzhitov, R. (2004). Toll-like receptors and acquired immunity. Seminars in Immunology, 16(1), 23–26.
  • Rosendahl Huber, S., van Beek, J., de Jonge, J., Luytjes, W., & van Baarle, D. (2014). T cell responses to viral infections—Opportunities for peptide vaccination. Frontiers in Immunology, 5, 171. doi:10.3389/fimmu.2014.00171 Retrieved from http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3997009/
  • Saha, C. K., Hasan, M. M., Hossain, M. S., Jahan, M. A., & Azad, A. K. (2017). In silico identification and characterization of common epitope-based peptide vaccine for Nipah and Hendra viruses. Asian Pacific Journal of Tropical Medicine, 10, 529–538.
  • Saha, S., & Raghava, G. (2006). AlgPred: Prediction of allergenic proteins and mapping of IgE epitopes. Nucleic Acids Research, 34, W202–W209.
  • Sakib, M. S., Islam, M. R., Hasan, A. K., & Nabi, A. H. (2014). Prediction of epitope-based peptides for the utility of vaccine development from fusion and glycoprotein of nipah virus using in silico approach. Adv Bioinformatics, 2014, 402492. doi:10.1155/2014/402492
  • Sette, A., Livingston, B., McKinney, D., Appella, E., Fikes, J., Sidney, J., … Chesnut, R. (2001). The development of multi-epitope vaccines: Epitope identification, vaccine design and clinical evaluation. Biologicals, 29, 271–276.
  • Somvanshi, P, & Seth, P. (2009). Prediction of T cell epitopes for the utility of vaccine development from structural proteins of dengue virus variants using in silico methods. Indian Journal of Biotechnology. 8, 193–198.
  • Soria-Guerra, R. E., Nieto-Gomez, R., Govea-Alonso, D. O., & Rosales-Mendoza, S. (2015). An overview of bioinformatics tools for epitope prediction: Implications on vaccine development. Journal of Biomedical Informatics, 53, 405–414. Retrieved from http://www.sciencedirect.com/science/article/pii/S1532046414002330
  • Stern, L. J., & Calvo-Calle, J. M. (2009). HLA-DR: Molecular insights and vaccine design. Current Pharmaceutical Design, 15, 3249–3261. Retrieved from http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3615543/
  • Torchala, M., Moal, I. H., Chaleil, R. A., Fernandez-Recio, J., & Bates, P. A. (2013). SwarmDock: A server for flexible protein–protein docking. Bioinformatics, 29, 807–809.
  • Toussi, D. N., & Massari, P. (2014). Immune adjuvant effect of molecularly-defined toll-like receptor ligands. Vaccines, 2, 323–353.
  • Tuiskunen Bäck, A., & Lundkvist, Å. (2013). Dengue viruses–An overview. Infection Ecology and Epidemiology, 3(1), 19839.
  • Vita, R., Overton, J. A., Greenbaum, J. A., Ponomarenko, J., Clark, J. D., Cantrell, J. R., … Sette, A. (2014). The immune epitope database (IEDB) 3.0. Nucleic Acids Research, 43, D405–D412.
  • Wang, Y, Virtanen, J, Xue, Z, & Zhang, Y. (2017). I-TASSER-MR: automated molecular replacement for distant-homology proteins using iterative fragment assembly and progressive sequence truncation. Nucleic acids research, 45, W429–W34.
  • Weiskopf, D., & Sette, A. (2014). T-cell immunity to infection with dengue virus in humans. Frontiers in Immunology, 5, 93.
  • Wiederstein, M., & Sippl, M. J. (2007). ProSA-web: Interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Research, 35, W407–W410.
  • Yamashita, Y., Anczurowski, M., Nakatsugawa, M., Tanaka, M., Kagoya, Y., Sinha, A., … Hirano, N. (2017). HLA-DP(84Gly) constitutively presents endogenous peptides generated by the class I antigen processing pathway. Nature Communications, 8, 15244. Retrieved from http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5436232/
  • Yang, Y., Sun, W., Guo, J., Zhao, G., Sun, S., Yu, H., … Du, L. (2015). In silico design of a DNA-based HIV-1 multi-epitope vaccine for Chinese populations. Human Vaccines and Immunotherapeutics, 11, 795–805.
  • Yano, A., Onozuka, A., Asahi-Ozaki, Y., Imai, S., Hanada, N., Miwa, Y., & Nisizawa, T. (2005). An ingenious design for peptide vaccines. Vaccine, 23, 2322–2326.
  • Zarei, M., Nezafat, N., Rahbar, M. R., Negahdaripour, M., Sabetian, S., Morowvat, M. H., & Ghasemi, Y. (2018). Decreasing the immunogenicity of arginine deiminase enzyme via structure-based computational analysis. Journal of Biomolecular Structure and Dynamics, doi: 10.1080/07391102.2018.1431151
  • Zheng, J., Lin, X., Wang, X., Zheng, L., Lan, S., Jin, S., … Wu, J. (2017). In silico analysis of epitope-based vaccine candidates against hepatitis B virus polymerase protein. Viruses, 9, 112.
  • Zuo, J., Hislop, A. D., Leung, C. S., Sabbah, S., & Rowe, M. (2013). Kaposi’s sarcoma-associated herpesvirus-encoded viral IRF3 modulates major histocompatibility complex class II (MHC-II) antigen presentation through MHC-II transactivator-dependent and-independent mechanisms: Implications for oncogenesis. Journal of Virology, 87, 5340–5350.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.