213
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Exploring the drug resistance mechanism of active site, non-active site mutations and their cooperative effects in CRF01_AE HIV-1 protease: molecular dynamics simulations and free energy calculations

, &
Pages 2608-2626 | Received 21 Feb 2018, Accepted 10 Jun 2018, Published online: 10 Jan 2019

References

  • Accelrys Software Inc. (2012) Discovery studio modeling environment, release 3.5. San Diego, CA: Author.
  • Adachi, M., Ohhara, T., Kurihara, K., Tamada, T., Honjo, E., Okazaki, N., … Kuroki, R. (2009). Structure of HIV-1 protease in complex with potent inhibitor KNI-272 determined by high-resolution X-ray and neutron crystallography. Proceedings of the National Academy of Sciences of the United States of America, 106(12), 4641–4646.
  • Agniswamy, J., Louis, J. M., Roche, J., Harrison, R. W., & Weber, I. T. (2016). Structural studies of a rationally selected multi-drug resistant HIV-1 protease reveal synergistic effect of distal mutations on flap dynamics. PLoS One, 11(12), e0168616.
  • Ahmed, S. M., Kruger, H. G., Govender, T., Maguire, G. E. M., Sayed, Y., Ibrahim, M. A. A., … Soliman, M. E. S. (2013). Comparison of the molecular dynamics and calculated binding free energies for nine FDA-approved HIV-1 PR drugs against subtype B and C-SA HIV PR. Chemical Biology & Drug Design, 81(2), 208–218.
  • Ahmed, S. M., Maguire, G. E. M., Kruger, H. G., & Govender, T. (2014). The impact of active site mutations of South African HIV PR on drug resistance: Insight from molecular dynamics simulations, binding free energy and per-residue footprints. Chemical Biology & Drug Design, 83(4), 472–481.
  • Antunes, D. A., Rigo, M. M., Sinigaglia, M., Medeiros, R. M. de, Junqueira, D. M., Almeida, S. E. M., & Vieira, G. F. (2014). New insights into the in silico prediction of HIV protease resistance to nelfinavir. PLoS One, 9(1), e87520.
  • Budambula, V., Musumba, F. O., Webale, M. K., Kahiga, T. M., Ongecha-Owuor, F., Kiarie, J. N., … Were, T. (2015). HIV-1 protease inhibitor drug resistance in Kenyan antiretroviral treatment-naive and -experienced injection drug users and non-drug users. AIDS Research and Therapy, 12, 27.
  • Cameron, C. E., Ridky, T. W., Shulenin, S., Leis, J., Weber, I. T., Copeland, T., … Skalka, A. M. (1994). Mutational analysis of the substrate binding pockets of the Rous sarcoma virus and human immunodeficiency virus-1 proteases. The Journal of Biological Chemistry, 269(15), 11170–11177.
  • Case, D. A., Betz, R. M., Botello-Smith, W., Cerutti, D. S., Cheatham, I., T. E., Darden, T. A., … Kollman, P. A. (2016). AMBER 16. San Francisco, CA: University of California.
  • Case, D. A., Cheatham, T. E., Darden, T., Gohlke, H., Luo, R., Merz, K. M., … Woods, R. J. (2005). The Amber biomolecular simulation programs. Journal of Computational Chemistry, 26(16), 1668–1688.
  • Chen, J. (2016). Drug resistance mechanisms of three mutations V32I, I47V and V82I in HIV-1 protease toward inhibitors probed by molecular dynamics simulations and binding free energy predictions. RSC Advances, 6(63), 58573–58585.
  • Chen, J., Yang, M., Hu, G., Shi, S., Yi, C., & Zhang, Q. (2009). Insights into the functional role of protonation states in the HIV-1 protease-BEA369 complex: Molecular dynamics simulations and free energy calculations. Journal of Molecular Modeling, 15(10), 1245–1252.
  • Chen, J., Zhang, S., Liu, X., & Zhang, Q. (2010). Insights into drug resistance of mutations D30N and I50V to HIV-1 protease inhibitor TMC-114: Free energy calculation and molecular dynamic simulation. Journal of Molecular Modeling, 16(3), 459–468.
  • Chen, X., Weber, I. T., & Harrison, R. W. (2004). Molecular dynamics simulations of 14 HIV protease mutants in complexes with indinavir. Journal of Molecular Modeling, 10(5–6), 373–381.
  • Chen, Z., Li, Y., Chen, E., Hall, D. L., Darke, P. L., Culberson, C., … Kuo, L. C. (1994). Crystal structure at 1.9-A resolution of human immunodeficiency virus (HIV) II protease complexed with L-735,524, an orally bioavailable inhibitor of the HIV proteases. The Journal of Biological Chemistry, 269(42), 26344–26348.
  • Chetty, S., Bhakat, S., Martin, A. J. M., & Soliman, M. E. S. (2016). Multi-drug resistance profile of PR20 HIV-1 protease is attributed to distorted conformational and drug binding landscape: Molecular dynamics insights. Journal of Biomolecular Structure & Dynamics, 34(1), 135–151.
  • Clemente, J. C., Coman, R. M., Thiaville, M. M., Janka, L. K., Jeung, J. A., Nukoolkarn, S., … Dunn, B. M. (2006). Analysis of HIV-1 CRF_01 A/E protease inhibitor resistance: Structural determinants for maintaining sensitivity and developing resistance to atazanavir. Biochemistry, 45(17), 5468–5477.
  • Coman, R. M., Robbins, A. H., Fernandez, M. A., Gilliland, C. T., Sochet, A. A., Goodenow, M. M., … Dunn, B. M. (2008). The contribution of naturally occurring polymorphisms in altering the biochemical and structural characteristics of HIV-1 subtype C protease. Biochemistry, 47(2), 731–743.
  • De Paschale, M., Cagnin, D., Cerulli, T., Mena, M., Magnani, C., Perini, P., … Clerici, P. (2011). Epidemiology of HIV-1 subtypes in an urban area of northern Italy. Clinical Microbiology and Infection, 17(6), 935–940.
  • Duan, Y., Wu, C., Chowdhury, S., Lee, M. C., Xiong, G., Zhang, W., … Kollman, P. (2003). A point-charge force field for molecular mechanics simulations of proteins based on condensed-phase quantum mechanical calculations. Journal of Computational Chemistry, 24(16), 1999–2012.
  • Dykeman, E. C., & Sankey, O. F. (2010). Normal mode analysis and applications in biological physics. Journal of Physics: Condensed Matter, 22(42), 423202.
  • Fiser, A. (2010). Template-based protein structure modeling. Methods in Molecular Biology (Clifton, N.J.), 673, 73–94.
  • Foulkes, J. E., Prabu-Jeyabalan, M., Cooper, D., Henderson, G. J., Harris, J., Swanstrom, R., & Schiffer, C. A. (2006). Role of invariant Thr80 in human immunodeficiency virus type 1 protease structure, function, and viral infectivity. Journal of Virology, 80(14), 6906–6916.
  • Frisch, M. J., Trucks, G.W., Schlegel, H. B., Scuseria GE, Robb, M. A, Cheeseman, J. R., … Fox, D.J. (2009) Gaussian 09, Revision E.01. Wallingford, CT: Gaussian.
  • Genheden, S., Kuhn, O., Mikulskis, P., Hoffmann, D., & Ryde, U. (2012). The normal-mode entropy in the MM/GBSA method: Effect of system truncation, buffer region, and dielectric constant. Journal of Chemical Information and Modeling, 52(8), 2079–2088.
  • Geretti, A. M. (Ed.). (2006). Antiretroviral resistance in clinical practice. London: Mediscript.
  • Goldfarb, N. E., Ohanessian, M., Biswas, S., McGee, T. D., Mahon, B. P., Ostrov, D. A., … Dunn, B. M. (2015). Defective hydrophobic sliding mechanism and active site expansion in HIV-1 protease drug resistant variant Gly48Thr/Leu89Met: Mechanisms for the loss of saquinavir binding potency. Biochemistry, 54(2), 422–433.
  • Götz, A. W., Williamson, M. J., Xu, D., Poole, D., Le Grand, S., & Walker, R. C. (2012). Routine microsecond molecular dynamics simulations with AMBER on GPUs. 1. Generalized born. Journal of Chemical Theory and Computation, 8(5), 1542–1555.
  • Hao, G.-F., Yang, G.-F., & Zhan, C.-G. (2010). Computational mutation scanning and drug resistance mechanisms of HIV-1 protease inhibitors. The Journal of Physical Chemistry B, 114(29), 9663–9676.
  • Hemelaar, J., Gouws, E., Ghys, P. D., & Osmanov, S. (2006). Global and regional distribution of HIV-1 genetic subtypes and recombinants in 2004. AIDS (London, England), 20(16), W13–W23.
  • Hornak, V., Okur, A., Rizzo, R. C., & Simmerling, C. (2006). HIV-1 protease flaps spontaneously open and reclose in molecular dynamics simulations. Proceedings of the National Academy of Sciences of the United States of America, 103(4), 915–920.
  • Hou, T., McLaughlin, W. A., & Wang, W. (2008). Evaluating the potency of HIV-1 protease drugs to combat resistance. Proteins, 71(3), 1163–1174.
  • Hsu, L.-Y., Subramaniam, R., Bacheler, L., & Paton, N. I. (2005). Characterization of mutations in CRF01_AE virus isolates from antiretroviral treatment-naive and -experienced patients in Singapore. Journal of Acquired Immune Deficiency Syndromes (1999), 38(1), 5–13.
  • Hu, G., Ma, A., Dou, X., Zhao, L., & Wang, J. (2016). Computational studies of a mechanism for binding and drug resistance in the wild type and four mutations of HIV-1 protease with a GRL-0519 inhibitor. International Journal of Molecular Sciences, 17(6).
  • Huang, X., Britto, M. D., Kear-Scott, J. L., Boone, C. D., Rocca, J. R., Simmerling, C., … Fanucci, G. E. (2014). The role of select subtype polymorphisms on HIV-1 protease conformational sampling and dynamics. The Journal of Biological Chemistry, 289(24), 17203–17214.
  • Huang, J., Zhu, Y., Sun, B., Yao, Y., & Liu, J. (2016). Determination of the protonation state of the Asp dyad: Conventional molecular dynamics versus thermodynamic integration. Journal of Molecular Modeling, 22(3), 58.
  • Hughes, P. J., Cretton-Scott, E., Teague, A., & Wensel, T. M. (2011). Protease inhibitors for patients with HIV-1 infection: A comparative overview. P T, 36(6), 332–345.
  • Humphrey, W., Dalke, A., & Schulten, K. (1996). VMD: Visual molecular dynamics. Journal of Molecular Graphics, 14(1), 33–38.
  • Jakalian, A., Jack, D. B., & Bayly, C. I. (2002). Fast, efficient generation of high-quality atomic charges. AM1-BCC model: II. Parameterization and validation. Journal of Computational Chemistry, 23(16), 1623–1641.
  • King, N. M., Melnick, L., Prabu-Jeyabalan, M., Nalivaika, E. A., Yang, S.-S., Gao, Y., … Schiffer, C. A. (2002). Lack of synergy for inhibitors targeting a multi-drug-resistant HIV-1 protease. Protein Science: A Publication of the Protein Society, 11(2), 418–429.
  • Klabe, R. M., Bacheler, L. T., Ala, P. J., Erickson-Viitanen, S., & Meek, J. L. (1998). Resistance to HIV protease inhibitors: A comparison of enzyme inhibition and antiviral potency. Biochemistry, 37(24), 8735–8742.
  • Kovalevsky, A. Y., Tie, Y., Liu, F., Boross, P. I., Wang, Y.-F., Leshchenko, S., … Weber, I. T. (2006). Effectiveness of nonpeptide clinical inhibitor TMC-114 on HIV-1 protease with highly drug resistant mutations D30N, I50V, and L90M. Journal of Medicinal Chemistry, 49(4), 1379–1387.
  • Laskowski, R. A., MacArthur, M. W., Moss, D. S., & Thornton, J. M. (1993). PROCHECK: A program to check the stereochemical quality of protein structures. Journal of Applied Crystallography, 26(2), 283–291.
  • Leonis, G., Steinbrecher, T., & Papadopoulos, M. G. (2013). A contribution to the drug resistance mechanism of darunavir, amprenavir, indinavir, and saquinavir complexes with HIV-1 protease due to flap mutation I50V: A systematic MM-PBSA and thermodynamic integration study. Journal of Chemical Information and Modeling, 53(8), 2141–2153.
  • Liu, F., Boross, P. I., Wang, Y.-F., Tozser, J., Louis, J. M., Harrison, R. W., & Weber, I. T. (2005). Kinetic, stability, and structural changes in high-resolution crystal structures of HIV-1 protease with drug-resistant mutations L24I, I50V, and G73S. Journal of Molecular Biology, 354(4), 789–800.
  • Liu, X., Xiu, Z., & Hao, C. (2009). Drug-resistant molecular mechanism of CRF01_AE HIV-1 protease due to V82F mutation. Journal of Computer-Aided Molecular Design, 23(5), 261–272.
  • Lockhat, H. A., Silva, J. R. A., Alves, C. N., Govender, T., Lameira, J., Maguire, G. E. M., … Kruger, H. G. (2016). Binding free energy calculations of nine FDA-approved protease inhibitors against HIV-1 subtype C I36T↑T containing 100 amino acids per monomer. Chemical Biology & Drug Design, 87(4), 487–498.
  • Lovell, S. C., Davis, I. W., Arendall, W. B., de Bakker, P. I. W., Word, J. M., Prisant, M. G., … Richardson, D. C. (2003). Structure validation by Calpha geometry: Phi, psi and Cbeta deviation. Proteins, 50(3), 437–450.
  • Mahalingam, B., Wang, Y.-F., Boross, P. I., Tozser, J., Louis, J. M., Harrison, R. W., & Weber, I. T. (2004). Crystal structures of HIV protease V82A and L90M mutants reveal changes in the indinavir-binding site. European Journal of Biochemistry, 271(8), 1516–1524.
  • Maier, J. A., Martinez, C., Kasavajhala, K., Wickstrom, L., Hauser, K. E., & Simmerling, C. (2015). ff14SB: Improving the accuracy of protein side chain and backbone parameters from ff99SB. Journal of Chemical Theory and Computation, 11(8), 3696–3713.
  • Malim, M. H., & Emerman, M. (2001). HIV-1 sequence variation: Drift, shift, and attenuation. Cell, 104(4), 469–472.
  • Manosuthi, W., Butler, D. M., Pérez-Santiago, J., Poon, A. F. Y., Pillai, S. K., Mehta, S. R., … Smith, D. M. (2010). Protease polymorphisms in HIV-1 subtype CRF01_AE represent selection by antiretroviral therapy and host immune pressure. AIDS (London, England), 24(3), 411–416.
  • Meher, B. R., & Wang, Y. (2012). Interaction of I50V mutant and I50L/A71V double mutant HIV-protease with inhibitor TMC114 (darunavir): Molecular dynamics simulation and binding free energy studies. The Journal of Physical Chemistry. B, 116(6), 1884–1900.
  • Meher, B. R., & Wang, Y. (2015). Exploring the drug resistance of V32I and M46L mutant HIV-1 protease to inhibitor TMC114: Flap dynamics and binding mechanism. Journal of Molecular Graphics and Modelling, 56, 60–73.
  • Munshi, S., Chen, Z., Yan, Y., Li, Y., Olsen, D. B., Schock, H. B., … Kuo, L. C. (2000). An alternate binding site for the P1–P3 group of a class of potent HIV-1 protease inhibitors as a result of concerted structural change in the 80s loop of the protease. Acta Crystallographica Section D: Biological Crystallography, 56(4), 381–388.
  • Muzammil, S., Armstrong, A. A., Kang, L. W., Jakalian, A., Bonneau, P. R., Schmelmer, V., … Freire, E. (2007). Unique thermodynamic response of tipranavir to human immunodeficiency virus type 1 protease drug resistance mutations. Journal of Virology, 81(10), 5144–5154.
  • Naicker, P., Achilonu, I., Fanucchi, S., Fernandes, M., Ibrahim, M. A. A., Dirr, H. W., … Sayed, Y. (2013). Structural insights into the South African HIV-1 subtype C protease: Impact of hinge region dynamics and flap flexibility in drug resistance. Journal of Biomolecular Structure & Dynamics, 31(12), 1370–1380.
  • Nalam, M. N. L., Peeters, A., Jonckers, T. H. M., Dierynck, I., & Schiffer, C. A. (2007). Crystal structure of lysine sulfonamide inhibitor reveals the displacement of the conserved flap water molecule in human immunodeficiency virus type 1 protease. Journal of Virology, 81(17), 9512–9518.
  • Nukoolkarn, S., Pongthapisith, V., Panyim, S., & Leelamanit, W. (2004). Sequence variability of the HIV type 1 protease gene in Thai patients experienced with antiretroviral therapy. AIDS Research and Human Retroviruses, 20(12), 1368–1372.
  • Ode, H., Matsuyama, S., Hata, M., Hoshino, T., Kakizawa, J., & Sugiura, W. (2007). Mechanism of drug resistance due to N88S in CRF01_AE HIV-1 protease, analyzed by molecular dynamics simulations. Journal of Medicinal Chemistry, 50(8), 1768–1777.
  • Ode, H., Neya, S., Hata, M., Sugiura, W., & Hoshino, T. (2006). Computational simulations of HIV-1 proteases – multi-drug resistance due to nonactive site mutation L90M. Journal of the American Chemical Society, 128(24), 7887–7895.
  • Ode, H., Ota, M., Neya, S., Hata, M., Sugiura, W., & Hoshino, T. (2005). Resistant mechanism against nelfinavir of human immunodeficiency virus type 1 proteases. The Journal of Physical Chemistry. B, 109(1), 565–574.
  • Onufriev, A., Bashford, D., & Case, D. A. (2004). Exploring protein native states and large-scale conformational changes with a modified generalized born model. Proteins, 55(2), 383–394.
  • Pazhanisamy, S., Stuver, C. M., Cullinan, A. B., Margolin, N., Rao, B. G., & Livingston, D. J. (1996). Kinetic characterization of human immunodeficiency virus type-1 protease-resistant variants. Journal of Biological Chemistry, 271(30), 17979–17985.
  • Peddi, S. R., Sivan, S. K., & Manga, V. (2018). Molecular dynamics and MM/GBSA-integrated protocol probing the correlation between biological activities and binding free energies of HIV-1 TAR RNA inhibitors. Journal of Biomolecular Structure & Dynamics, 36(2), 486–503.
  • Perryman, A. L., Lin, J.-H., & McCammon, J. A. (2004). HIV-1 protease molecular dynamics of a wild-type and of the V82F/I84V mutant: Possible contributions to drug resistance and a potential new target site for drugs. Protein Science: A Publication of the Protein Society, 13(4), 1108–1123.
  • Prabu-Jeyabalan, M., Nalivaika, E. A., Romano, K., & Schiffer, C. A. (2006). Mechanism of substrate recognition by drug-resistant human immunodeficiency virus type 1 protease variants revealed by a novel structural intermediate. Journal of Virology, 80(7), 3607–3616.
  • Rastelli, G., Del Rio, A., Degliesposti, G., & Sgobba, M. (2010). Fast and accurate predictions of binding free energies using MM-PBSA and MM-GBSA. Journal of Computational Chemistry, 31(4), 797–810.
  • Robert, X., & Gouet, P. (2014). Deciphering key features in protein structures with the new ENDscript server. Nucleic Acids Research, 42(Web Server issue), W320–W324.
  • Ryckaert, J., Ciccotti, G., & Berendsen, H. J. C. (1977). Numerical integration of the Cartesian equations of motion of a system with constraints: Molecular dynamics of n-alkanes. Journal of Computational Physics, 23(3), 327–341.
  • Sadiq, S. K., Wright, D. W., Kenway, O. A., & Coveney, P. V. (2010). Accurate ensemble molecular dynamics binding free energy ranking of multidrug-resistant HIV-1 proteases. Journal of Chemical Information and Modeling, 50(5), 890–905.
  • Sali, A., & Blundell, T. L. (1993). Comparative protein modelling by satisfaction of spatial restraints. Journal of Molecular Biology, 234(3), 779–815.
  • Scott, W. R. P., & Schiffer, C. A. (2000). Curling of flap tips in HIV-1 protease as a mechanism for substrate entry and tolerance of drug resistance. Structure, 8(12), 1259–1265.
  • Shi, S., Zhang, S., & Zhang, Q. (2018). Insight into binding mechanisms of inhibitors MKP56, MKP73, MKP86, and MKP97 to HIV-1 protease by using molecular dynamics simulation. Journal of Biomolecular Structure & Dynamics, 36(4), 981–992.
  • Soares, R. O., Batista, P. R., Costa, M. G. S., Dardenne, L. E., Pascutti, P. G., & Soares, M. A. (2010). Understanding the HIV-1 protease nelfinavir resistance mutation D30N in subtypes B and C through molecular dynamics simulations. Journal of Molecular Graphics & Modelling, 29(2), 137–147.
  • Srivastava, H. K., & Sastry, G. N. (2012). Molecular dynamics investigation on a series of HIV protease inhibitors: Assessing the performance of MM-PBSA and MM-GBSA approaches. Journal of Chemical Information and Modeling, 52(11), 3088–3098.
  • Suhai, S. (2012). Theoretical and computational methods in genome research. New York, NY: Springer Science & Business Media.
  • Sundquist, W. I., & Kräusslich, H.-G. (2012). HIV-1 assembly, budding, and maturation. Cold Spring Harbor Perspectives in Medicine, 2(7), a006924.
  • Tie, Y., Kovalevsky, A. Y., Boross, P., Wang, Y.-F., Ghosh, A. K., Tozser, J., … Weber, I. T. (2007). Atomic resolution crystal structures of HIV-1 protease and mutants V82A and I84V with saquinavir. Proteins, 67(1), 232–242.
  • Turner, P. J. (2005). XMGRACE (Version 5.1.19) [Center for Coastal and Land-Margin Research]. Beaverton, OR: Oregon Graduate Institute of Science and Technology.
  • Vanquelef, E., Simon, S., Marquant, G., Garcia, E., Klimerak, G., Delepine, J. C., … & Dupradeau, F.-Y. (2011). R.E.D. Server: A web service for deriving RESP and ESP charges and building force field libraries for new molecules and molecular fragments. Nucleic Acids Research, 39(Web Server issue), W511–W517.
  • Vasavi, C. S., Tamizhselvi, R., & Munusami, P. (2017). Drug resistance mechanism of L10F, L10F/N88S and L90M mutations in CRF01_AE HIV-1 protease: Molecular dynamics simulations and binding free energy calculations. Journal of Molecular Graphics & Modelling, 75, 390–402.
  • Vyas, V. K., Ukawala, R. D., Ghate, M., & Chintha, C. (2012). Homology modeling a fast tool for drug discovery: Current perspectives. Indian Journal of Pharmaceutical Sciences, 74(1), 1–17.
  • Wang, J., Shao, Q., Cossins, B. P., Shi, J., Chen, K., & Zhu, W. (2016). Thermodynamics calculation of protein–ligand interactions by QM/MM polarizable charge parameters. Journal of Biomolecular Structure & Dynamics, 34(1), 163–176.
  • Wang, J., Wolf, R. M., Caldwell, J. W., Kollman, P. A., & Case, D. A. (2004). Development and testing of a general amber force field. Journal of Computational Chemistry, 25(9), 1157–1174.
  • Weber, I. T., & Agniswamy, J. (2009). HIV-1 protease: Structural perspectives on drug resistance. Viruses, 1(3), 1110–1136.
  • Weber, I. T., & Harrison, R. W. (1999). Molecular mechanics analysis of drug-resistant mutants of HIV protease. Protein Engineering, 12(6), 469–474.
  • Weiser, J., Shenkin, P. S., & Still, W. C. (1999). Approximate atomic surfaces from linear combinations of pairwise overlaps (LCPO). Journal of Computational Chemistry, 20(2), 217–230.
  • Wensing, A. M., Calvez, V., Günthard, H. F., Johnson, V. A., Paredes, R., Pillay, D., … Richman, D. D. (2014). 2014 Update of the drug resistance mutations in HIV-1. Topics in Antiviral Medicine, 22(3), 642–650.
  • Wittayanarakul, K., Hannongbua, S., & Feig, M. (2008). Accurate prediction of protonation state as a prerequisite for reliable MM-PB(GB)SA binding free energy calculations of HIV-1 protease inhibitors. Journal of Computational Chemistry, 29(5), 673–685.
  • Wlodawer, A., & Vondrasek, J. (1998). Inhibitors of HIV-1 protease: A major success of structure-assisted drug design. Annual Review of Biophysics and Biomolecular Structure, 27, 249–284.
  • Xiang, Z. (2006). Advances in homology protein structure modeling. Current Protein & Peptide Science, 7(3), 217–227.
  • Yam, W. C., Chen, J. H. K., Wong, K. H., Chan, K., Cheng, V. C. C., Lam, H. Y., … Yuen, K. Y. (2006). Clinical utility of genotyping resistance test on determining the mutation patterns in HIV-1 CRF01_AE and subtype B patients receiving antiretroviral therapy in Hong Kong. Journal of Clinical Virology, 35(4), 454–457.
  • Yang, M., Jiang, X., & Jiang, N. (2014). Protonation state and free energy calculation of HIV-1 protease-inhibitor complex based on electrostatic polarisation effect. Molecular Physics, 112(12), 1659–1669.
  • Yu, Y., Wang, J., Shao, Q., Shi, J., & Zhu, W. (2015). Effects of drug-resistant mutations on the dynamic properties of HIV-1 protease and inhibition by amprenavir and darunavir. Scientific Reports, 5, 10517.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.