361
Views
13
CrossRef citations to date
0
Altmetric
Research Article

Structural insights into the unique inhibitory mechanism of Kunitz type trypsin inhibitor from Cicer arietinum L.

, , &
Pages 2669-2677 | Received 23 Apr 2018, Accepted 11 Jun 2018, Published online: 24 Nov 2018

References

  • Bendre, A. D., Ramasamy, S., & Suresh, C. (2018). Analysis of Kunitz inhibitors from plants for comprehensive structural and functional insights. International Journal of Biological Macromolecules, 113, 933–943.
  • Bendtsen, J. D., Nielsen, H., von Heijne, G., & Brunak, S. (2004). Improved prediction of signal peptides: SignalP 3.0. Journal of Molecular Biology, 340(4), 783–795
  • Bode, W., & Huber, R. (1991). Ligand binding: Proteinase-protein inhibitor interactions: Current opinion in structural biology. Current Opinion in Structural Biology, 1(1), 45–52
  • Bradshaw, H. D., Hollick, J. B., Parsons, T. J., Clarke, H. R., & Gordon, M. P. (1990). Systemically wound-responsive genes in poplar trees encode proteins similar to sweet potato sporamins and legume Kunitz trypsin inhibitors. Plant Molecular Biology, 14(1), 51–59
  • Chen, V. B., Arendall, W. B., Headd, J. J., Keedy, D. A., Immormino, R. M., Kapral, G. J., … Richardson, D. C. (2010). MolProbity: All-atom structure validation for macromolecular crystallography. Acta Crystallographica Section D: Biological Crystallography, 66(1), 12–21
  • Dasgupta, J., Khamrui, S., Dattagupta, J. K., & Sen, U. (2006). Spacer ASN determines the fate of Kunitz (STI) inhibitors, as revealed by structural and biochemical studies on WCI mutants. Biochemistry, 45(22), 6783–6792
  • Dattagupta, J. K., Podder, A., Chakrabarti, C., Sen, U., Mukhopadhyay, D., Dutta, S. K., & Singh, M. (1999). Refined crystal structure (2.3 Å) of a double‐headed winged bean α‐chymotrypsin inhibitor and location of its second reactive site. Proteins: Structure, Function, and Bioinformatics, 35(3), 321–331
  • DeLano, W. L. (2002). The PyMOL molecular graphics system. Retrieved from http://pymol.org
  • Gatehouse, A. M., & Boulter, D. (1983). Assessment of the antimetabolic effects of trypsin inhibitors from cowpea (Vigna unguiculata) and other legumes on development of the bruchid beetle Callosobruchus maculatus. Journal of the Science of Food and Agriculture, 34(4), 345–350
  • Robert, X. and Gouet, P. (2014). Deciphering key features in protein structures with the new ENDscript server. Nucleic Acids Research, 42(W1), W320–W324.
  • Hatakeyama, T., Unno, H., Kouzuma, Y., Uchida, T., Eto, S., Hidemura, H., Kusunoki, M. (2007). C-type lectin-like carbohydrate recognition of the hemolytic lectin CEL-III containing ricin-type β-trefoil folds. Journal of Biological Chemistry, 282(52), 37826–37835
  • Hernández-Nistal, J., Martín, I., Jiménez, T., Dopico, B., & Labrador, E. (2009). Two cell wall Kunitz trypsin inhibitors in chickpea during seed germination and seedling growth. Plant Physiology and Biochemistry, 47(3), 181–187
  • Krauchenco, S., Pando, S. C., Marangoni, S., & Polikarpov, I. (2003). Crystal structure of the Kunitz (STI)-type inhibitor from Delonix regia seeds. Biochemical and Biophysical Research Communications, 312(4), 1303–1308
  • Kumar, A., Ghosh, B., Poswal, H., Pandey, K., Hosur, M., Dwivedi, A., … Sharma, S. M. (2016). Protein crystallography beamline (PX-BL21) at Indus-2 synchrotron. Journal of synchrotron Radiation, 23(2), 629–634
  • Kumar, S., Stecher, G., & Tamura, K. (2016). MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution, 33(7), 1870–1874
  • Kunitz, M. (1945). Crystallization of a trypsin inhibitor from soybean. Science, 101(2635), 668–669.
  • Letunic, I., & Bork, P. (2016). Interactive tree of life (iTOL) v3: An online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Research, 44(W1), W242–W245
  • Leung, D., Abbenante, G., & Fairlie, D. P. (2000). Protease inhibitors: Current status and future prospects. Journal of Medicinal Chemistry, 43(3), 305–341
  • Liebschner, D., Dauter, M., Brzuszkiewicz, A., & Dauter, Z. (2013). On the reproducibility of protein crystal structures: Five atomic resolution structures of trypsin. Acta Crystallographica Section D: Biological Crystallography, 69(8), 1447–1462
  • Lohkamp, B., Emsley, P., & Cowtan, K. (2005). Coot news. CCP4 Newsletter, 42, 3–5
  • Luthy, J. A., Praissman, M., Finkenstadt, W. R., & Laskowski, M. (1973). Detailed mechanism of interaction of bovine β-Trypsin with soybean trypsin inhibitor (Kunitz) I. Stopped flow measurements. Journal of Biological Chemistry, 248(5), 1760–1771.
  • McCoy, A. J., Grosse-Kunstleve, R. W., Adams, P. D., Winn, M. D., Storoni, L. C., & Read, R. J. (2007). Phaser crystallographic software. Journal of Applied Crystallography, 40(4), 658–674
  • Meester, P. D., Brick, P., Lloyd, L. F., Blow, D. M., & Onesti, S. (1998). Structure of the Kunitz-type soybean trypsin inhibitor (STI): Implication for the interactions between members of the STI family and tissue-plasminogen activator. Acta Crystallographica Section D: Biological Crystallography, 54(4), 589–597
  • Murshudov, G. N., Skubák, P., Lebedev, A. A., Pannu, N. S., Steiner, R. A., Nicholls, R. A., & Vagin, A. A. (2011). REFMAC5 for the refinement of macromolecular crystal structures. Acta Crystallographica Section D: Biological Crystallography, 67(4), 355–367
  • Murzin, A. G., Lesk, A. M., & Chothia, C. (1992). β-Trefoil fold: Patterns of structure and sequence in the Kunitz inhibitors interleukins-1β and 1α and fibroblast growth factors. Journal of Molecular Biology, 223(2), 531–543
  • Nair, M., & Sandhu, S. S. (2013). A Kunitz trypsin inhibitor from chickpea (Cicer arietinum L.) that exerts an antimicrobial effect on Fusarium oxysporum f. sp. ciceris. Agricultural Sciences, 4(11), 585–594
  • Nair, M., Sandhu, S. S., & Babbar, A. (2013). Purification of trypsin inhibitor from seeds of Cicer arietinum (L.) and its insecticidal potential against Helicoverpa armigera (Hübner). Theoretical and Experimental Plant Physiology, 25(2), 137–148
  • Panigrahi, P., Sule, M., Ghanate, A., Ramasamy, S., & Suresh, C. (2015). Engineering proteins for thermostability with iRDP web server. PloS One, 10(10), e0139486
  • Patankar, A., Harsulkar, A., Giri, A., Gupta, V., Sainani, M., Ranjekar, P., & Deshpande, V. (1999). Diversity in inhibitors of trypsin and Helicoverpa armigera gut proteinases in chickpea (Cicer arietinum) and its wild relatives. Theoretical and Applied Genetics, 99(3-4), 719–726
  • Patil, D. N., Chaudhary, A., Sharma, A. K., Tomar, S., & Kumar, P. (2012). Structural basis for dual inhibitory role of tamarind Kunitz inhibitor (TKI) against factor Xa and trypsin. The FEBS Journal, 279(24), 4547–4564
  • Pierce, B. G., Hourai, Y., & Weng, Z. (2011). Accelerating protein docking in ZDOCK using an advanced 3D convolution library. PloS One, 6(9), e24657
  • Powell, H. R., Johnson, O., & Leslie, A. G. (2013). Autoindexing diffraction images with iMosflm. Acta Crystallographica Section D: Biological Crystallography, 69(7), 1195–1203
  • Radisky, E. S., & Koshland, D. E. (2002). A clogged gutter mechanism for protease inhibitors. Proceedings of the National Academy of Sciences, 99(16), 10316–10321
  • Release, S. (2015). 1: Maestro, version 10.1. New York, NY: Schrödinger, LLC.
  • Richardson, M. (1981). Protein inhibitors of enzymes. Food Chemistry, 6(3), 235–253
  • Sharma, R., Rawat, V., & Suresh, C. (2014). Genome-wide identification and tissue-specific expression analysis of UDP-glycosyltransferases genes confirm their abundance in Cicer arietinum (Chickpea) genome. PLoS One, 9(10), e109715
  • Sievers, F., Wilm, A., Dineen, D., Gibson, T. J., Karplus, K., Li, W., Söding, J. (2011). Fast, scalable generation of high‐quality protein multiple sequence alignments using Clustal Omega. Molecular Systems Biology, 7(1), 539
  • Song, H. K., & Suh, S. W. (1998). Kunitz-type soybean trypsin inhibitor revisited: refined structure of its complex with porcine trypsin reveals an insight into the interaction between a homologous inhibitor from Erythrina caffra and tissue-type plasminogen activator. Journal of Molecular Biology, 275(2), 347–363
  • Souza-Pinto, J. C., Oliva, M. L., Sampaio, C. A., Damas, J., Auerswald, E. A., Lima, E., Sampaio, M. U. (1996). Effect of a serine proteinase inhibitor from Leucaena leucocephala on plasma kallikrein and plasmin. Immunopharmacology, 33(1), 330–332
  • Sreerama, N. CDPro: A software package for analyzing protein spectra. Retrieved from http://lamar.colostate.edu/∼sreeram/CDPro/index.html
  • Srinivasan, A., Giri, A. P., Harsulkar, A. M., Gatehouse, J. A., & Gupta, V. S. (2005). A Kunitz trypsin inhibitor from chickpea (Cicer arietinum L.) that exerts anti-metabolic effect on podborer (Helicoverpa armigera) larvae. Plant Molecular Biology, 57(3), 359–374
  • Verma, M., Kumar, V., Patel, R. K., Garg, R., & Jain, M. (2015). CTDB: An integrated chickpea transcriptome database for functional and applied genomics. PloS One, 10(8), e0136880
  • Zhou, D., Lobo, Y. A., Batista, I. F., Marques-Porto, R., Gustchina, A., Oliva, M. L., & Wlodawer, A. (2013). Crystal structures of a plant trypsin inhibitor from Enterolobium contortisiliquum (EcTI) and of its complex with bovine trypsin. PloS One, 8(4), e62252

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.