642
Views
71
CrossRef citations to date
0
Altmetric
Research Article

Vaccinomics approach for developing multi-epitope peptide pneumococcal vaccine

, , , , , , , , ORCID Icon & show all
Pages 3524-3535 | Received 02 Jun 2018, Accepted 22 Aug 2018, Published online: 11 Jan 2019

References

  • Ashkenazy, H., Erez, E., Martz, E., Pupko, T., & Ben-Tal, N. (2010). ConSurf 2010: Calculating evolutionary conservation in sequence and structure of proteins and nucleic acids. Nucleic Acids Research, 38, W529–W533. doi:10.1093/nar/gkq399 Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/20478830
  • Balachandran, P., Hollingshead, S. K., Paton, J. C., & Briles, D. E. (2001). The autolytic enzyme LytA of Streptococcus pneumoniae is not responsible for releasing pneumolysin. Journal of Bacteriology, 183(10), 3108–3116.
  • Basith, S., Manavalan, B., Lee, G., Kim, S. G., & Choi, S. (2011). Toll-like receptor modulators: A patent review (2006–2010). Expert Opinion on Therapeutic Patents, 21(6), 927–944. doi:10.1517/13543776.2011.569494
  • Bender, M. H., & Weiser, J. N. (2006). The atypical amino‐terminal LPNTG‐containing domain of the pneumococcal human IgA1‐specific protease is required for proper enzyme localization and function. Molecular Microbiology, 61(2), 526–543.
  • Bergmann, C. C., Yao, Q., Ho, C.-K., & Buckwold, S. L. (1996). Flanking residues alter antigenicity and immunogenicity of multi-unit CTL epitopes. Journal of Immunology (Baltimore, MD: 1950), 157(8), 3242–3249.
  • Berry, A. M., & Paton, J. C. (2000). Additive attenuation of virulence of Streptococcus pneumoniae by mutation of the genes encoding pneumolysin and other putative pneumococcal virulence proteins. Infection and Immunity, 68(1), 133–140.
  • Berzofsky, J. A., Terabe, M., & Wood, L. V. (2012). Strategies to use immune modulators in therapeutic vaccines against cancer. Seminars in Oncology, 39(3), 348–357. doi:10.1053/j.seminoncol.2012.02.002 Retrieved from http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3356566/
  • Bhasin, M., & Raghava, G. P. (2004). Prediction of CTL epitopes using QM, SVM and ANN techniques. Vaccine, 22(23–24), 3195–3204. doi:10.1016/j.vaccine.2004.02.005
  • Bhasin, M., Singh, H., & Raghava, G. P. (2003). MHCBN: a comprehensive database of MHC binding and non-binding peptides. Bioinformatics (Oxford, England), 19(5), 665–666.
  • Blythe, M. J., Doytchinova, I. A., & Flower, D. R. (2002). JenPep: a database of quantitative functional peptide data for immunology. Bioinformatics (Oxford, England), 18(3), 434–439.
  • Briles, D. E., Ades, E., Paton, J. C., Sampson, J. S., Carlone, G. M., Huebner, R. C., … Hollingshead, S. K. (2000). Intranasal immunization of mice with a mixture of the pneumococcal proteins PsaA and PspA is highly protective against nasopharyngeal carriage of Streptococcus pneumoniae. Infection and Immunity, 68(2), 796–800.
  • Briles, D. E., Hollingshead, S., Brooks-Walter, A., Nabors, G. S., Ferguson, L., Schilling, M., … Swift, A. (2000). The potential to use PspA and other pneumococcal proteins to elicit protection against pneumococcal infection. Vaccine, 18(16), 1707–1711.
  • Briles, D. E., Hollingshead, S. K., Nabors, G. S., Paton, J. C., & Brooks-Walter, A. (2000). The potential for using protein vaccines to protect against otitis media caused by Streptococcus pneumoniae. Vaccine, 19, S87–S95.
  • Brown, J. S., Ogunniyi, A. D., Woodrow, M. C., Holden, D. W., & Paton, J. C. (2001). Immunization with components of two iron uptake ABC transporters protects mice against systemic Streptococcus pneumoniae infection. Infection and Immunity, 69(11), 6702–6706. doi:10.1128/iai.69.11.6702-6706.2001
  • Brusic, V., Rudy, G., Honeyman, G., Hammer, J., & Harrison, L. (1998). Prediction of MHC class II-binding peptides using an evolutionary algorithm and artificial neural network. Bioinformatics, 14(2), 121–130.
  • Conroy, H., Marshall, N. A., & Mills, K. H. (2008). TLR ligand suppression or enhancement of Treg cells? A double-edged sword in immunity to tumours. Oncogene, 27(2), 168–180. doi:10.1038/sj.onc.1210910
  • Cundell, D., Pearce, B., Sandros, J., Naughton, A., & Masure, H. (1995). Peptide permeases from Streptococcus pneumoniae affect adherence to eucaryotic cells. Infection and Immunity, 63(7), 2493–2498.
  • Darrieux, M., Goulart, C., Briles, D., & Leite, L. C. (2015). Current status and perspectives on protein-based pneumococcal vaccines. Critical Reviews in Microbiology, 41(2), 190–200. doi:10.3109/1040841x.2013.813902
  • Dimitrov, I., Bangov, I., Flower, D. R., & Doytchinova, I. (2014). AllerTOP v.2–a server for in silico prediction of allergens. Journal of Molecular Modeling, 20(6), 2278. doi:10.1007/s00894-014-2278-5
  • El-Manzalawy, Y., Dobbs, D., & Honavar, V. (2008). Predicting linear B-cell epitopes using string kernels. Journal of Molecular Recognition, 21(4), 243–255. doi:10.1002/jmr.893
  • Gasteiger, E., Hoogland, C., Gattiker, A., Duvaud, S. E., Wilkins, M. R., Appel, R. D., & Bairoch, A. (2005). Protein identification and analysis tools on the ExPASy server. In J. M. Walker (Ed.), The proteomics protocols handbook (pp. 571–607). Totowa, NJ: Humana Press.
  • Godfroid, F., Hermand, P., Verlant, V., Denoël, P., & Poolman, J. T. (2011). Preclinical evaluation of the Pht Proteins as potential cross-protective pneumococcal vaccine Antigens. Infection and Immunity, 79(1), 238–245. doi:10.1128/IAI.00378-10 Retrieved from http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3019885/
  • Goodswen, S. J., Kennedy, P. J., & Ellis, J. T. (2014). Enhancing in silico protein-based vaccine discovery for eukaryotic pathogens using predicted peptide-MHC binding and peptide conservation scores. PLoS One, 9(12), e115745. doi:10.1371/journal.pone.0115745
  • Guan, P., Doytchinova, I. A., Zygouri, C., & Flower, D. R. (2003). MHCPred: A server for quantitative prediction of peptide-MHC binding. Nucleic Acids Research, 31(13), 3621–3624.
  • Hajighahramani, N., Nezafat, N., Eslami, M., Negahdaripour, M., Rahmatabadi, S. S., & Ghasemi, Y. (2017). Immunoinformatics analysis and in silico designing of a novel multi-epitope peptide vaccine against Staphylococcus aureus. Infection, Genetics and Evolution, 48, 83–94.
  • Hausdorff, W. P., Feikin, D. R., & Klugman, K. P. (2005). Epidemiological differences among pneumococcal serotypes. The Lancet Infectious Diseases, 5(2), 83–93.
  • Heo, L., Park, H., & Seok, C. (2013). GalaxyRefine: Protein structure refinement driven by side-chain repacking. Nucleic Acids Research, 41(W1), W384–W388. doi:10.1093/nar/gkt458 Retrieved from http://dx.doi.org/10.1093/nar/gkt458
  • Ikai, A. (1980). Thermostability and aliphatic index of globular proteins. Journal of Biochemistry, 88(6), 1895–1898.
  • Jenik, M., Parra, R. G., Radusky, L. G., Turjanski, A., Wolynes, P. G., & Ferreiro, D. U. (2012). Protein frustratometer: A tool to localize energetic frustration in protein molecules. Nucleic Acids Research, 40(W1), W348–W351. doi:10.1093/nar/gks447 Retrieved from http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3394345/
  • Jin, M. S., Kim, S. E., Heo, J. Y., Lee, M. E., Kim, H. M., Paik, S.-G., … Lee, J.-O. (2007). Crystal structure of the TLR1-TLR2 heterodimer induced by binding of a tri-acylated lipopeptide. Cell, 130(6), 1071–1082. doi:10.1016/j.cell.2007.09.008
  • Jomaa, M., Yuste, J., Paton, J. C., Jones, C., Dougan, G., & Brown, J. S. (2005). Antibodies to the iron uptake ABC transporter lipoproteins PiaA and PiuA promote opsonophagocytosis of Streptococcus pneumoniae. Infection and Immunity, 73(10), 6852–6859.
  • Karplus, M., & McCammon, J. A. (2002). Molecular dynamics simulations of biomolecules. Nature Structural Biology, 9(9), 646–652.
  • Kattner, C., Toussi, D. N., Zaucha, J., Wetzler, L. M., Rüppel, N., Zachariae, U., … Tanabe, M. (2014). Crystallographic analysis of Neisseria meningitidis PorB extracellular loops potentially implicated in TLR2 recognition. Journal of Structural Biology, 185(3), 440–447. doi:10.1016/j.jsb.2013.12.006
  • Kaur, R., Surendran, N., Ochs, M., & Pichichero, M. E. (2014). Human antibodies to PhtD, PcpA, and Ply reduce adherence to human lung epithelial cells and murine nasopharyngeal colonization by Streptococcus pneumoniae. Infection and Immunity, 82(12), 5069–5075. doi:10.1128/iai.02124-14
  • Kerr, A. R., Paterson, G. K., McCluskey, J., Iannelli, F., Oggioni, M. R., Pozzi, G., & Mitchell, T. J. (2006). The contribution of PspC to pneumococcal virulence varies between strains and is accomplished by both complement evasion and complement-independent mechanisms. Infection and Immunity, 74(9), 5319–5324.
  • Khan, M. N., & Pichichero, M. E. (2012). Vaccine candidates PhtD and PhtE of Streptococcus pneumoniae are adhesins that elicit functional antibodies in humans. Vaccine, 30(18), 2900–2907.
  • Khan, M. N., & Pichichero, M. E. (2013). CD4 T cell memory and antibody responses directed against the pneumococcal histidine triad proteins PhtD and PhtE following nasopharyngeal colonization and immunization and their role in protection against pneumococcal colonization in mice. Infection and Immunity, 81(10), 3781–3792. doi:10.1128/iai.00313-13
  • Kozakov, D., Hall, D. R., Beglov, D., Brenke, R., Comeau, S. R., Shen, Y., … Vajda, S. (2010). Achieving reliability and high accuracy in automated protein docking: ClusPro, PIPER, SDU, and stability analysis in CAPRI rounds 13–19. Proteins: Structure, Function, and Bioinformatics, 78(15), 3124–3130.
  • Kringelum, J. V., Lundegaard, C., Lund, O., & Nielsen, M. (2012). Reliable B Cell epitope predictions: Impacts of method development and improved benchmarking. PLOS Computational Biology, 8(12), e1002829. doi:10.1371/journal.pcbi.1002829
  • Kyte, J., & Doolittle, R. F. (1982). A simple method for displaying the hydropathic character of a protein. Journal of Molecular Biology, 157(1), 105–132.
  • Laskowski, R. A., MacArthur, M. W., Moss, D. S., & Thornton, J. M. (1993). PROCHECK: a program to check the stereochemical quality of protein structures. Journal of Applied Crystallography, 26(2), 283–291. doi:10.1107/S0021889892009944 Retrieved from https://doi.org/10.1107/S0021889892009944
  • Lin, H., Peng, Y., Lin, Z., Zhang, S., & Guo, Y. (2015). Development of a conjugate vaccine against invasive pneumococcal disease based on capsular polysaccharides coupled with PspA/family 1 protein of Streptococcus pneumoniae. Microbial Pathogenesis, 8384, 35–40.
  • Liu, I. H., Lo, Y. S., & Yang, J. M. (2011). PAComplex: A web server to infer peptide antigen families and binding models from TCR-pMHC complexes. Nucleic Acids Research, 39, W254–W260. doi:10.1093/nar/gkr434
  • Livingston, B., Crimi, C., Newman, M., Higashimoto, Y., Appella, E., Sidney, J., & Sette, A. (2002). A rational strategy to design multiepitope immunogens based on multiple Th lymphocyte epitopes. The Journal of Immunology, 168(11), 5499–5506.
  • Lu, Y., Ding, J., Liu, W., & Chen, Y. H. (2002). A candidate vaccine against influenza virus intensively improved the immunogenicity of a neutralizing epitope. International Archives of Allergy and Immunology, 127(3), 245–250. Retrieved from http://www.karger.com/DOI/10.1159/000053869
  • Luthy, R., Bowie, J. U., & Eisenberg, D. (1992). Assessment of protein models with three-dimensional profiles. Nature, 356(6364), 83–85. doi:10.1038/356083a0
  • Magnan, C. N., Randall, A., & Baldi, P. (2009). SOLpro: Accurate sequence-based prediction of protein solubility. Bioinformatics, 25(17), 2200–2207. doi:10.1093/bioinformatics/btp386
  • Magnan, C. N., Zeller, M., Kayala, M. A., Vigil, A., Randall, A., Felgner, P. L., & Baldi, P. (2010). High-throughput prediction of protein antigenicity using protein microarray data. Bioinformatics, 26(23), 2936–2943. doi:10.1093/bioinformatics/btq551
  • Mahmoodi, S., Nezafat, N., Barzegar, A., Negahdaripour, M., Nikanfar, A. R., Zarghami, N., & Ghasemi, Y. (2016). Harnessing bioinformatics for designing a novel multiepitope peptide vaccine against breast cancer. Current Pharmaceutical Biotechnology, 17(12), 1100–1114.
  • Malley, R. (2010). Antibody and cell-mediated immunity to Streptococcus pneumoniae: Implications for vaccine development. Journal of Molecular Medicine, 88(2), 135–142.
  • Matijevic, T., & Pavelic, J. (2010). Toll-like receptors: cost or benefit for cancer? Current Pharmaceutical Design, 16(9), 1081–1090.
  • Munikumar, M., Priyadarshini, V., Pradhan, D., Swargam, S., & Umamaheswari, A. (2013). 177 T-cell vaccine design for Streptococcus pneumoniae: An in silico approach. Journal of Biomolecular Structure and Dynamics, 31, 114–115. doi:10.1080/07391102.2013.786419
  • Neefjes, J., Jongsma, M. L., Paul, P., & Bakke, O. (2011). Towards a systems understanding of MHC class I and MHC class II antigen presentation. Nature Reviews Immunology, 11(12), 823–836. doi:10.1038/nri3084
  • Negahdaripour, M., Eslami, M., Nezafat, N., Hajighahramani, N., Ghosshon, M. B., Shoolian, E., & Ghasemi, Y. (2017). A novel HPV prophylactic peptide vaccine, designed by immunoinformatics and structural vaccinology approaches. Infection, Genetics and Evolution, 54, 402–416. doi:10.1016/j.meegid.2017.08.002
  • Negahdaripour, M., Nezafat, N., & Ghasemi, Y. (2016). A panoramic review and in silico analysis of IL-11 structure and function. Cytokine & Growth Factor Reviews, 32, 41–61.
  • Negahdaripour, M., Nezafat, N., Hajighahramani, N., Rahmatabadi, S. S., & Ghasemi, Y. (2017). Investigating CRISPR-Cas systems in Clostridium botulinum via bioinformatics tools. Infection Genetics and Evolution, 54, 355–373. doi:10.1016/j.meegid.2017.06.027
  • Negahdaripour, M., Nezafat, N., Hajighahramani, N., Soheil Rahmatabadi, S., Hossein Morowvat, M., & Ghasemi, Y. (2017). In silico study of different signal peptides for secretory production of interleukin-11 in Escherichia coli. Current Proteomics, 14(2), 112–121.
  • Nezafat, N., Eslami, M., Negahdaripour, M., Rahbar, M. R., & Ghasemi, Y. (2017). Designing an efficient multi-epitope oral vaccine against Helicobacter pylori using immunoinformatics and structural vaccinology approaches. Molecular Biosystems, 13(4), 699–713.
  • Nezafat, N., Ghasemi, Y., Javadi, G., Khoshnoud, M. J., & Omidinia, E. (2014). A novel multi-epitope peptide vaccine against cancer: an in silico approach. Journal of Theoretical Biology, 349, 121–134. doi:10.1016/j.jtbi.2014.01.018
  • Nezafat, N., Karimi, Z., Eslami, M., Mohkam, M., Zandian, S., & Ghasemi, Y. (2016). Designing an efficient multi-epitope peptide vaccine against Vibrio cholerae via combined immunoinformatics and protein interaction based approaches. Computational Biology and Chemistry, 62, 82–95.
  • Ogunniyi, A. D., Woodrow, M. C., Poolman, J. T., & Paton, J. C. (2001). Protection against Streptococcus pneumoniae elicited by immunization with pneumolysin and CbpA. Infection and Immunity, 69(10), 5997–6003. doi:10.1128/IAI.69.10.5997-6003.2001. Retrieved from http://www.ncbi.nlm.nih.gov/pmc/articles/PMC98727/
  • Pardoll, D. M. (2002). Spinning molecular immunology into successful immunotherapy. Nature Reviews Immunology, 2(4), 227–238. doi:10.1038/nri774
  • Paton, J. C. (2004). New pneumococcal vaccines: Basic science developments. The pneumococcus. Washington, DC: American Society of Microbiology Press.
  • Pikkemaat, M. G., Linssen, A. B., Berendsen, H. J., & Janssen, D. B. (2002). Molecular dynamics simulations as a tool for improving protein stability. Protein Engineering, Design and Selection, 15(3), 185–192.
  • Pilishvili, T., Lexau, C., Farley, M. M., Hadler, J., Harrison, L. H., Bennett, N. M., … Moore, M. R. (2010). Sustained reductions in invasive pneumococcal disease in the era of conjugate vaccine. The Journal of Infectious Diseases, 201(1), 32–41.
  • Rahmatabadi, S. S., Nezafat, N., Negahdaripour, M., Hajighahramani, N., Morowvat, M. H., & Ghasemi, Y. (2016). Studying the features of 57 confirmed CRISPR loci in 29 strains of Escherichia coli. Journal of Basic Microbiology, 56(6), 645–653.
  • Rammensee, H., Bachmann, J., Emmerich, N. P., Bachor, O. A., & Stevanovic, S. (1999). SYFPEITHI: Database for MHC ligands and peptide motifs. Immunogenetics, 50(3–4), 213–219.
  • Reche, P. A., Glutting, J. P., & Reinherz, E. L. (2002). Prediction of MHC class I binding peptides using profile motifs. Human Immunology, 63(9), 701–709.
  • Saha, S., & Raghava, G. P. S. (2006). AlgPred: Prediction of allergenic proteins and mapping of IgE epitopes. Nucleic Acids Research, 34(Web Server), W202–W209. doi:10.1093/nar/gkl343 Retrieved from http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1538830/
  • Sakhteman, A., Khoddami, M., Negahdaripour, M., Mehdizadeh, A., Tatar, M., & Ghasemi, Y. (2016). Exploring 3D structure of human gonadotropin hormone receptor at antagonist state using homology modeling, molecular dynamic simulation, and cross-docking studies. Journal of Molecular Modeling, 22(9), 225. doi:10.1007/s00894-016-3091-0
  • Shen, W., Cao, Y., Cha, L., Zhang, X., Ying, X., Zhang, W., … Zhong, L. (2015). Predicting linear B-cell epitopes using amino acid anchoring pair composition. BioData Mining, 8(1), 14. doi:10.1186/s13040-015-0047-3
  • Singh, H., & Raghava, G. P. S. (2001). ProPred: Prediction of HLA-DR binding sites. Bioinformatics, 17(12), 1236–1237. doi:10.1093/bioinformatics/17.12.1236.
  • Singleton, R. J., Hennessy, T. W., Bulkow, L. R., Hammitt, L. L., Zulz, T., Hurlburt, D. A., … Parkinson, A. (2007). Invasive pneumococcal disease caused by nonvaccine serotypes among Alaska native children with high levels of 7-valent pneumococcal conjugate vaccine coverage. Jama, 297(16), 1784–1792.
  • Takaiwa, F. (2007). A rice-based edible vaccine expressing multiple T-cell epitopes to induce oral tolerance and inhibit allergy. Immunology and Allergy Clinics of North America, 27(1), 129–139. doi: 10.1016/j.iac.2006.11.001 Retrieved from http://www.sciencedirect.com/science/article/pii/S0889856106001032
  • Toussi, D., & Massari, P. (2014). Immune adjuvant effect of molecularly-defined toll-like receptor ligands. Vaccines, 2(2), 323. Retrieved from http://www.mdpi.com/2076-393X/2/2/323
  • Varshavsky, A. (1997). The N-end rule pathway of protein degradation . Genes to Cells: Devoted to Molecular & Cellular Mechanisms, 2(1), 13–28.
  • Verhoeven, D., Xu, Q., & Pichichero, M. E. (2014). Vaccination with a Streptococcus pneumoniae trivalent recombinant PcpA, PhtD and PlyD1 protein vaccine candidate protects against lethal pneumonia in an infant murine model. Vaccine, 32(26), 3205–3210. doi:10.1016/j.vaccine.2014.04.004 Retrieved from http://www.sciencedirect.com/science/article/pii/S0264410X14005064
  • Vita, R., Zarebski, L., Greenbaum, J. A., Emami, H., Hoof, I., Salimi, N., … Peters, B. (2010). The immune epitope database 2.0. Nucleic Acids Research, 38, D854–D862. doi:10.1093/nar/gkp1004
  • Weinberger, D. M., Malley, R., & Lipsitch, M. (2011). Serotype replacement in disease after pneumococcal vaccination. The Lancet, 378(9807), 1962–1973.
  • Wilson, R., Cohen, J. M., Jose, R. J., de Vogel, C., Baxendale, H., & Brown, J. S. (2015). Protection against Streptococcus pneumoniae lung infection after nasopharyngeal colonization requires both humoral and cellular immune responses. Mucosal Immunology, 8(3), 627.
  • World Health Organization. (2007). Pneumococcal conjugate vaccine for childhood immunization, WHO position paper. The Weekly Epidemiological Record, 82(12), 93–104.
  • Wu, H. Y., Nahm, M. H., Guo, Y., Russell, M. W., & Briles, D. E. (1997). Intranasal immunization of mice with PspA (pneumococcal surface protein A) can prevent intranasal carriage, pulmonary infection, and sepsis with Streptococcus pneumoniae. The Journal of Infectious Diseases, 175(4), 839–846.
  • Yang, J., & Zhang, Y. (2015). I-TASSER server: new development for protein structure and function predictions. Nucleic Acids Research, 43(W1), W174–W181.
  • Zahroh, H., Ma'Rup, A., Tambunan, U. S. F., & Parikesit, A. A. (2016). Immunoinformatics approach in designing epitope-based vaccine against meningitis-inducing bacteria (Streptococcus pneumoniae, Neisseria meningitidis, and Haemophilus influenzae Type b). Drug Target Insights, 10, DTI.S38458–D29. doi:10.4137/DTI.S38458 Retrieved from http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5091093/
  • Zhang, G. L., Petrovsky, N., Kwoh, C. K., August, J. T., & Brusic, V. (2006). PRED(TAP): A system for prediction of peptide binding to the human transporter associated with antigen processing. Immunome Research, 2, 3–3. doi:10.1186/1745-7580-2-3. Retrieved from http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1524936/
  • Zhang, X., Issagholian, A., Berg, E. A., Fishman, J. B., Nesburn, A. B., & BenMohamed, L. (2005). Th-cytotoxic T-lymphocyte chimeric epitopes extended by Nε-palmitoyl lysines induce herpes simplex virus type 1-specific effector CD8+ Tc1 responses and protect against ocular infection. Journal of Virology, 79(24), 15289–15301.
  • Zhao, Z., Sun, H.-Q., Wei, S.-S., Li, B., Feng, Q., Zhu, J., … Wu, C. (2015). Multiple B-cell epitope vaccine induces a Staphylococcus enterotoxin B-specific IgG1 protective response against MRSA infection. Scientific Reports, 5(1), 12371. doi:10.1038/srep12371. Retrieved from http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4511869/

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.