553
Views
29
CrossRef citations to date
0
Altmetric
Research Article

Aerobic respiration: proof of concept for the oxygen-centric murburn perspective

ORCID Icon, ORCID Icon, &
Pages 4542-4556 | Received 15 Oct 2018, Accepted 20 Nov 2018, Published online: 08 Jan 2019

References

  • Abramson, J., Riistama, S., Larsson, G., Jasaitis, A., Svensson-Ek, M., Laakkonen, L., … Wikström, M. (2000). The structure of the ubiquinol oxidase from Escherichia coli and its ubiquinone binding site. Nature Structural Biology, 7, 910–917. doi:10.1038/82824
  • Affourtit, C., Krab, K., Leach, G. R., Whitehouse, D. G., & Moore, A. L. (2001). New insights into the regulation of plant succinate dehydrogenase: On the role of protonmotive force. Journal of Biological Chemistry, 276(35), 32567–32574. doi:10.1074/jbc.M103111200
  • Andrew, D., Hager, L., & Manoj, K. M. (2011). The intriguing enhancement of chloroperoxidase mediated one-electron oxidations by azide, a known active-site ligand. Biochemical and Biophysical Research Communications, 415(4), 646–649. doi:10.1016/j.bbrc.2011.10.128
  • Antonini, E., Brunori, M., Greenwood, C., Malmstrom, B. G., & Rotilio, G. C. (1971). The interaction of cyanide with cytochrome oxidase. European Journal of Biochemistry, 23(2), 396–400.
  • Anwar, M., Saldana-Caboverde, A., Garcia, S., & Diaz, F. (2018). The organization of mitochondrial supercomplexes is modulated by oxidative stress in vivo in mouse models of mitochondrial encephalopathy. International Journal of Molecular Sciences, 19(6), 1582. doi:10.3390/ijms19061582
  • Aramaki, Y., Takano, S., & Tsuchiya, S. (2001). Cationic liposomes induce macrophage apoptosis through mitochondrial pathway. Archives of Biochemistry and Biophysics, 392(2), 245–250. doi:10.1006/abbi.2001.2458
  • Arnold, S., & Kadenbach, B. (1997). Cell respiration is controlled by ATP, an allosteric inhibitor of cytochrome-c oxidase. European Journal of Biochemistry, 249(1), 350–354.
  • Baradaran, R., Berrisford, J. M., Minhas, G. S., & Sazanov, L. A. (2013). Crystal structure of the entire respiratory complex I. Nature, 494(7438), 443–448.
  • Berden, J. (2003). Rotary movements within the ATP synthase do not constitute an obligatory element of the catalytic mechanism. IUBMB Life, 55(8), 473–481. doi:10.1080/15216540310001612318
  • Berg, J. M., Tymoczko, J. L., & Stryer, L. (2002). Biochemistry (5th ed.). New York, NY: WH Freeman.
  • Birrell, J. A., & Hirst, J. (2013). Investigation of NADH binding, hydride transfer, and NAD(+) dissociation during NADH oxidation by mitochondrial Complex I using modified nicotinamide nucleotides. Biochemistry, 52(23), 4048–4055. doi:10.1021/bi3016873
  • Bleier, L., & Dröse, S. (2013). Superoxide generation by Complex III: From mechanistic rationales to functional consequences. Biochimica et Biophysica Acta (BBA) – Bioenergetics, 1827(11–12), 1320–1331. doi:10.1016/j.bbabio.2012.12.002
  • Bonder, B., Martin, L., & Miracle, A. W. (2002). Culture in clinical care. Thorofare, NJ: Slack Incorporated.
  • Boyer, P. D. (1997). The ATP synthase – a splendid molecular machine. Annual Review of Biochemistry, 66(1), 717–749.
  • Chen, Q., Vazquez, E. J., Moghaddas, S., Hoppel, C. L., & Lesnefsky, E. J. (2003). Production of reactive oxygen species by mitochondria: Central role of Complex III. Journal of Biological Chemistry, 278(38), 36027–36031. doi:10.1074/jbc.M304854200
  • Chazotte, B., & Hackenbrock, C. R. (1989). Lateral diffusion as a rate-limiting step in ubiquinone-mediated mitochondrial electron transport. Journal of Biological Chemistry, 264, 4978–4985.
  • Chovancova, E., Pavelka, A., Benes, P., Strnad, O., Brezovsky, J., Kozlikova, B., … Medek, P. (2012). CAVER 3.0: A tool for the analysis of transport pathways in dynamic protein structures. PLoS Computational Biology, 8(10), e1002708. doi:10.1371/journal.pcbi.1002708
  • Cohn, M. (1953). A study of oxidative phosphorylation with O18-labeled inorganic phosphate. Journal of Biological Chemistry, 201(2), 735–750.
  • Cook, G. M., Greening, C., Hards, K., & Berney, M. (2014). Energetics of pathogenic bacteria and opportunities for drug development. Advances in Microbial Physiology, 65, 1–62.
  • Daniel, K., & Zippora, G.-E. (1984). Demonstration of two binding sites for ADP on the isolated β‐subunit of the Rhodospirillum rubrum R1F0F1‐ATP synthase. FEBS Letters, 178(1), 10–14.
  • de Oliveira, M. R. (2015). Vitamin A and retinoids as mitochondrial toxicants. Oxidative Medicine and Cellular Longevity, 2015, 140267.
  • DeLano, W. L. (2002). The PyMOL molecular graphics system. San Carlos, CA: DeLano Scientific.
  • Dogan, S. A., Cerutti, R., Beninca, C., Brea-Calvo, G., Jacobs, H. T., Zeviani, M., … Viscomi, C. (2018). Perturbed redox signaling exacerbates a mitochondrial myopathy. Cell Metabolism, 28(5), 764–775. doi:10.1016/j.cmet.2018.07.012
  • Dröse, S. (2013). Differential effects of Complex II on mitochondrial ROS production and their relation to cardioprotective pre-and postconditioning. Biochimica et Biophysica Acta (BBA) – Bioenergetics, 1827(5), 578–587. doi:10.1016/j.bbabio.2013.01.004
  • Fiedorczuk, K., Letts, J. A., Degliesposti, G., Kaszuba, K., Skehel, M., & Sazanov, L. A. (2016). Atomic structure of the entire mammalian mitochondrial Complex I. Nature, 538(7625), 406–410. doi:10.1038/nature19794
  • Gade, S. K., Bhattacharya, S., & Manoj, K. M. (2012). Redox active molecules cytochrome c and vitamin C enhance heme-enzyme peroxidations by serving as non-specific agents for redox relay. Biochemical and Biophysical Research Communications, 419(2), 211–214. doi:10.1016/j.bbrc.2012.01.149
  • Ganesana, M., Erlichman, J. S., & Andreescu, S. (2012). Real-time monitoring of superoxide accumulation and antioxidant activity in a brain slice model using an electrochemical cytochrome c biosensor. Free Radical Biology and Medicine, 53(12), 2240–2249. doi:10.1016/j.freeradbiomed.2012.10.540
  • Gideon, D. A., Kumari, R., Lynn, A. M., & Manoj, K. M. (2012). What is the functional role of N-terminal transmembrane helices in the metabolism mediated by liver microsomal cytochrome P450 and its reductase?. Cell Biochemistry and Biophysics, 63(1), 35–45. doi:10.1007/s12013-012-9339-0
  • Grivennikova, V. G., & Vinogradov, A. D. (2006). Generation of superoxide by the mitochondrial Complex I. Biochimica et Biophysica Acta, 1757(5–6), 553–561.
  • Gu, J., Wu, M., Guo, R., Yan, K., Lei, J., Gao, N., & Yang, M. (2016). The architecture of the mammalian respirasome. Nature, 537(7622), 639–643.
  • Gupte, S., Wu, E. S., Hoechli, L., Hoechli, M., Jacobson, K., Sowers, A. E., & Hackenbrock, C. R. (1984). Relationship between lateral diffusion, collision frequency, and electron transfer of mitochondrial inner membrane oxidation–reduction components. Proceedings of the National Academy of Sciences USA, 81(9), 2606–2610. doi:10.1073/pnas.81.9.2606
  • Hollingworth, R. M. (2001). CHAPTER 57 – Inhibitors and uncouplers of mitochondrial oxidative phosphorylation. In R. I. Krieger & W. C. Krieger (Eds.), Handbook of pesticide toxicology (2nd ed., pp. 1169–1261). San Diego, CA: Academic Press.
  • Huang, L. S., Cobessi, D., Tung, E. Y., & Berry, E. A. (2005). Binding of the respiratory chain inhibitor antimycin to the mitochondrial bc1 complex: A new crystal structure reveals an altered intramolecular hydrogen-bonding pattern. Journal of Molecular Biology, 351(3), 573–597. doi:10.1016/j.jmb.2005.05.053
  • Hyre, D. E., Le Trong, I., Merritt, E. A., Eccleston, J. F., Green, N. M., Stenkamp, R. E., & Stayton, P. S. (2006). Cooperative hydrogen bond interactions in the streptavidin–biotin system. Protein Science, 15(3), 459–467.
  • Iverson, T. M., Luna-Chavez, C., Croal, L. R., Cecchini, G., & Rees, D. C. (2002). Crystallographic studies of the Escherichia coli quinol-fumarate reductase with inhibitors bound to the quinol-binding site. Journal of Biological Chemistry, 277(18), 16124–16130. doi:10.1074/jbc.M200815200
  • Jezek, P., Zackova, M., Ruzicka, M., Skobisova, E., & Jaburek, M. (2004). Mitochondrial uncoupling proteins – facts and fantasies. Physiological Research, 53(Suppl 1), S199–S211.
  • Junge, W., & Nelson, N. (2015). ATP synthase. Annual Review of Biochemistry, 84(1), 631–657.
  • Klingenberg, M., & Huang, S.-G. (1999). Structure and function of the uncoupling protein from brown adipose tissue. Biochimica et Biophysica Acta, 1415(2), 271–296.
  • Klionsky, D. J., Brusilow, W. S. A., & Simoni, R. D. (1984). In vivo evidence for the role of the epsilon subunit as an inhibitor of the proton-translocating ATPase of Escherichia coli. Journal of Bacteriology, 160(3), 1055–1060.
  • Ksenzenko, M. Y., Vygodina, T., Berka, V., Ruuge, E., & Konstantinov, A. (1992). Cytochrome oxidase-catalyzed superoxide generation from hydrogen peroxide. FEBS Letters, 297(1–2), 63–66. doi:10.1016/0014-5793(92)80328-E
  • Lehninger, A. L., Nelson, D. L., & Cox, M. (2004). Principles of biochemistry. Basingstoke, UK: Palgrave Macmillan Limited.
  • Lenn, T., Leake, M. C., & Mullineaux, C. W. (2008). Are Escherichia coli OXPHOS complexes concentrated in specialized zones within the plasma membrane?. Biochemical Society Transactions, 36(5), 1032–1036. doi:10.1042/BST0361032
  • Ling, G. N. (1981). Oxidative phosphorylation and mitochondrial physiology: A critical review of chemiosmotic theory, and reinterpretation by the association-induction hypothesis. Physiological Chemistry and Physics, 13(1), 29–96.
  • Mailer, K. (1990). Superoxide radical as electron donor for oxidative phosphorylation of ADP. Biochemical and Biophysical Research Communications, 170(1), 59–64. doi:10.1016/0006-291X(90)91240-S
  • Man, P. Y. W., Turnbull, D. M., & Chinnery, P. F. (2002). Leber hereditary optic neuropathy. Journal of Medical Genetics, 39(3), 162–169. doi:10.1136/jmg.39.3.162
  • Manoj, K. M. (2006). Chlorinations catalyzed by chloroperoxidase occur via diffusible intermediate (s) and the reaction components play multiple roles in the overall process. Biochimica et Biophysica Acta (BBA) – Proteins and Proteomics, 1764(8), 1325–1339.
  • Manoj, K. M. (2017). Debunking chemiosmosis and proposing murburn concept as the explanation for cellular respiration. Biomedical Reviews, 28, 35–52.
  • Manoj, K. M. (2018). Aerobic respiration: Criticism of the proton-centric explanation involving rotary ATP synthesis, chemiosmosis principle, proton pumps & electron transport chain. Biochemistry Insights. doi:10.1177/1178626418818442
  • Manoj, K. M., & Hager, L. P. (2001). Utilization of peroxide and its relevance in oxygen insertion reactions catalyzed by chloroperoxidase. Biochimica et Biophysica Acta (BBA) – Protein Structure and Molecular Enzymology, 1547(2), 408–417. doi:10.1016/S0167-4838(01)00210-2
  • Manoj, K. M., & Hager, L. P. (2006). A colorimetric method for detection and quantification of chlorinating activity of hemeperoxidases. Analytical Biochemistry, 348(1), 84–86. doi:10.1016/j.ab.2005.10.014
  • Manoj, K. M., & Hager, L. P. (2008). Chloroperoxidase, a Janus enzyme. Biochemistry, 47(9), 2997–3003.
  • Manoj, K. M., Baburaj, A., Ephraim, B., Pappachan, F., Maviliparambathu, P. P., Vijayan, U. K., … Mathew, L. T. (2010a). Explaining the atypical reaction profiles of heme enzymes with a novel mechanistic hypothesis and kinetic treatment. PloS One, 5(5), e10601. doi:10.1371/journal.pone.0010601
  • Manoj, K. M., Gade, S. K., & Mathew, L. (2010b). Cytochrome P450 reductase: A harbinger of diffusible reduced oxygen species. PloS One, 5(10), e13272.
  • Manoj, K. M., Gade, S. K., Venkatachalam, A., & Gideon, D. A. (2016a). Electron transfer amongst flavo-and hemo-proteins: Diffusible species effect the relay processes, not protein–protein binding. RSC Advances, 6(29), 24121–24129. doi:10.1039/C5RA26122H
  • Manoj, K. M., Parashar, A., Avanthika, V., Goyal, S., Moharana, S., Singh, P. G., … Sardar, D. (2016b). Atypical profiles and modulations of heme-enzymes catalyzed outcomes by low amounts of diverse additives suggest diffusible radicals' obligatory involvement in such redox reactions. Biochimie, 125, 91–111.
  • Manoj, K. M., Parashar, A., Gade, S. K., & Venkatachalam, A. (2016c). Functioning of microsomal cytochrome P450s: Murburn concept explains the metabolism of xenobiotics in hepatocytes. Frontiers in Pharmacology, 7, 161.
  • Manoj, K. M., Venkatachalam, A., & Parashar, A. (2016d). Metabolism of xenobiotics by cytochrome P450: Novel insights into the thermodynamics, kinetics and roles of redox proteins and diffusible reactive species. Drug Metabolism Reviews, 48, 41–42.
  • Manoj, K. M., Yi, X., Rai, G. P., & Hager, L. P. (1999). A kinetic epoxidation assay for chloroperoxidase. Biochemical and Biophysical Research Communications, 266(2), 301–303. doi:10.1006/bbrc.1999.1810
  • Matte, A., & Delbaere, L. T. J. (2010). ATP‐binding motifs. In: eLS. Chichester, UK: John Wiley & Sons Ltd. http://www.els.net [doi: 10.1002/9780470015902.a0003050.pub2]
  • McLeish, M. J., & Kenyon, G. L. (2005). Relating structure to mechanism in creatine kinase. Critical Reviews in Biochemistry and Molecular Biology, 40(1), 1–20. doi:10.1080/10409230590918577
  • Menz, R. I., Walker, J. E., & Leslie, A. G. (2001). Structure of bovine mitochondrial F(1)-ATPase with nucleotide bound to all three catalytic sites: Implications for the mechanism of rotary catalysis. Cell, 106(3), 331–341. doi:10.1016/S0092-8674(01)00452-4
  • Mitchell, P. (1961). Coupling of phosphorylation to electron and hydrogen transfer by a chemi-osmotic type of mechanism. Nature, 191(4784), 144–148.
  • Mitchell, S. C. (2016). Xenobiotic conjugation with phosphate – a metabolic rarity. Xenobiotica; the Fate of Foreign Compounds in Biological Systems, 46(8), 743–756.
  • Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., & Olson, A. J. (2009). AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of Computational Chemistry, 30(16), 2785–2791. doi:10.1002/jcc.21256
  • Mukherjee, S., & Warshel, A. (2017). The F0F1 ATP synthase: From atomistic three-dimensional structure to the rotary-chemical function. Photosynthesis Research, 134(1), 1–15. doi:10.1007/s11120-017-0411-x
  • Murima, M., McKinney, J. D., & Pethe, K. (2014). Targeting bacterial central metabolism for drug development. Chemistry & Biology, 21, 1423–1432. doi:10.1016/j.chembiol.2014.08.020
  • Murphy, M. P. (2009). How mitochondria produce reactive oxygen species. Biochemical Journal, 417(1), 1–13. doi:10.1042/BJ20081386
  • Nałęcz, M. J. (1986). Is there sufficient experimental evidence to consider the mitochondrial cytochrome bc1 complex a proton pump? Probably no. Journal of Bioenergetics and Biomembranes, 18(1), 21–38. doi:10.1007/BF00743610
  • Napiwotzki, J., Shinzawa-Itoh, K., Yoshikawa, S., & Kadenbach, B. (1997). ATP and ADP bind to cytochrome c oxidase and regulate its activity. Biological Chemistry, 378(9), 1013–1021.
  • Nath, S. (2010). Beyond the chemiosmotic theory: Analysis of key fundamental aspects of energy coupling in oxidative phosphorylation in the light of a torsional mechanism of energy transduction and ATP synthesis – Invited review part 1. Journal of Bioenergetics and Biomembranes, 42(4), 293–300. doi:10.1007/s10863-010-9296-5
  • Nedergaard, J., Ricquier, D., & Kozak, L. P. (2005). Uncoupling proteins: Current status and therapeutic prospects. EMBO Reports, 6(10), 917–921.
  • Nicholls, D. G. (2004). Mitochondrial membrane potential and aging. Aging Cell, 3(1), 35–40.
  • Otrin, L., Marušič, N., Bednarz, C., Vidakovic-Koch, T. R., Lieberwirth, I., Landfester, K., & Sundmacher, K. (2017). Towards artificial mitochondrion: Mimicking oxidative phosphorylation in polymer and hybrid membranes. Nano Letters, 17(11), 6816–6821. doi:10.1021/acs.nanolett.7b03093
  • Parashar, A., & Manoj, K. M. (2012). Traces of certain drug molecules can enhance heme-enzyme catalytic outcomes. Biochemical and Biophysical Research Communications, 417(3), 1041–1045. doi:10.1016/j.bbrc.2011.12.090
  • Parashar, A., Gade, S. K., Potnuru, M., Madhavan, N., & Manoj, K. M. (2014a). The curious case of benzbromarone: Insight into super-inhibition of cytochrome P450. PloS One, 9(3), e89967.
  • Parashar, A., Gideon, D. A., & Manoj, K. M. (2018). Murburn concept: A molecular explanation for hormetic and idiosyncratic dose responses. Dose–Response: A Publication of International Hormesis Society, 16(2), 1559325818774421.
  • Parashar, A., Venkatachalam, A., Gideon, D. A., & Manoj, K. M. (2014b). Cyanide does more to inhibit heme enzymes, than merely serving as an active-site ligand. Biochemical and Biophysical Research Communications, 455(3–4), 190–193. doi:10.1016/j.bbrc.2014.10.137
  • Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., & Ferrin, T. E. (2004). UCSF chimera – a visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25(13), 1605–1612. doi:10.1002/jcc.20084
  • Rahman, J., & Rahman, S. (2018). Mitochondrial medicine in the omics era. Lancet (London, England), 391(10139), 2560–2574.
  • Ramasubbu, N., Paloth, V., Luo, Y., Brayer, G. D., & Levine, M. J. (1996). Structure of human salivary alpha-amylase at 1.6 A resolution: Implications for its role in the oral cavity. Acta Crystallographica Section D Biological Crystallography, 52(3), 435–446. doi:10.1107/S0907444995014119
  • Safarian, S., Rajendran, C., Müller, H., Preu, J., Langer, J. D., Ovchinnikov, S., … Michel, H. (2016). Structure of a bd oxidase indicates similar mechanisms for membrane integrated oxygen reductases. Science, 352(6285), 583–586. doi:10.1126/science.aaf2477
  • Slater, E. (1987). The mechanism of the conservation of energy of biological oxidations. European Journal of Biochemistry, 166(3), 489–504.
  • Stefanska, A., Sypniewska, G., Donderski, R., & Manitius, J. (2005). Lipid peroxidation, advanced glycation end products and antioxidant status in patients on dialysis. eJIFCC, 16(1), 3–6.
  • Sundaramoorthy, M., Terner, J., & Poulos, T. L. (1995). The crystal structure of chloroperoxidase: A heme peroxidase–cytochrome P450 functional hybrid. Structure, 3(12), 1367–1378. doi:10.1016/S0969-2126(01)00274-X
  • Tisi, D., Bax, B., & Loew, A. (2001). The three-dimensional structure of cytosolic bovine retinal creatine kinase. Acta Crystallographica Section D Biological Crystallography, 57(2), 187–193. doi:10.1107/S0907444900015614
  • Tsukihara, T., Aoyama, H., Yamashita, E., Tomizaki, T., Yamaguchi, H., Shinzawa-Itoh, K., … Yoshikawa, S. (1996). The whole structure of the 13-subunit oxidized cytochrome C oxidase at 2.8 Å. Science, 272(5265), 1136–1144. doi:10.1126/science.272.5265.1136
  • Tyszkiewicz, E., & Roux, E. (1987). Role of the superoxide anion (O2−) and hydroxyl radical (OH*). In J. Biggens (ed.), ATP synthesis obtained with spinach chloroplasts in darkness. Progress in photosynthesis research (Vol. III). Dordrecht, Netherlands: Martinus Nijhoff Publishers.
  • Valle, A., Oliver, J., & Roca, P. (2010). Role of uncoupling proteins in cancer. Cancers, 2(2), 567–591.
  • van Beilen, J. W. A., & Hellingwerf, K. J. (2016). All three endogenous quinone species of Escherichia coli are involved in controlling the activity of the aerobic/anaerobic response regulator ArcA. Frontiers in Microbiology, 7, 1339.
  • Venkatachalam, A., Parashar, A., & Manoj, K. M. (2016). Functioning of drug-metabolizing microsomal cytochrome P450s- 1. In silico probing of proteins suggest that the distal heme 'active site' pocket plays a relatively 'passive role' in some enzyme-substrate interactions. In Silico Pharmacology, 4(1), 1.
  • Voet, D., & Voet, J. G. (2011). Biochemistry (4th ed.). Hoboken, NJ: John Wiley & Sons.
  • Wainio, W. (1985). An assessment of the chemiosmotic hypothesis of mitochondrial energy transduction. International Review of Cytology, 96, 29–50.
  • Walker, J. E., Saraste, M., Runswick, M. J., & Gay, N. J. (1982). Distantly related sequences in the alpha- and beta-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold. EMBO Journal, 1(8), 945–951. doi:10.1002/j.1460-2075.1982.tb01276.x
  • Watson, J. D. (2014). Type 2 diabetes as a redox disease. Lancet (London, England), 383(9919), 841–843.
  • Watt, I. N., Montgomery, M. G., Runswick, M. J., Leslie, A. G., & Walker, J. E. (2010). Bioenergetic cost of making an adenosine triphosphate molecule in animal mitochondria. Proceedings of the National Academy of Sciences USA, 107(39), 16823–16827. doi:10.1073/pnas.1011099107
  • Wilks, J. C., & Slonczewski, J. L. (2007). pH of the cytoplasm and periplasm of Escherichia coli: Rapid measurement by green fluorescent protein fluorimetry. Journal of Bacteriology, 189(15), 5601–5607. doi:10.1128/JB.00615-07
  • Williams, R. (1979). Some unrealistic assumptions in the theory of chemi-osmosis and their consequences. FEBS Letters, 102(1), 126–132.
  • Wu, M., Gu, J., Guo, R., Huang, Y., & Yang, M. (2016). Structure of mammalian respiratory supercomplex I1III2IV1. Cell, 167(6), 1598–1609.e10.
  • Wynn, R. M., Kato, M., Chuang, J. L., Tso, S. C., Li, J., & Chuang, D. T. (2008). Pyruvate dehydrogenase kinase-4 structures reveal a metastable open conformation fostering robust core-free basal activity. Journal of Biological Chemistry, 283(37), 25305–25315. doi:10.1074/jbc.M802249200
  • Yamaguchi, M., Belogrudov, G. I., Matsuno-Yagi, A., & Hatefi, Y. (2000). The multiple nicotinamide nucleotide-binding subunits of bovine heart mitochondrial NADH:ubiquinone oxidoreductase (complex I). European Journal of Biochemistry, 267(2), 329–336. doi:10.1046/j.1432-1327.2000.00999.x
  • Yu, J., Zhou, Y., Tanaka, I., & Yao, M. (2010). Roll: A new algorithm for the detection of protein pockets and cavities with a rolling probe sphere. Bioinformatics, 26(1), 46–52. doi:10.1093/bioinformatics/btp599
  • Zakharova, N. V., Zharova, T. V., & Vinogradov, A. D. (1999). Kinetics of transhydrogenase reaction catalyzed by the mitochondrial NADH-ubiquinone oxidoreductase (Complex I) imply more than one catalytic nucleotide-binding sites. FEBS Letters, 444(2–3), 211–216. doi:10.1016/S0014-5793(99)00062-9
  • Zharova, T. V., & Vinogradov, A. D. (1997). A competitive inhibition of the mitochondrial NADH-ubiquinone oxidoreductase (Complex I) by ADP-ribose. Biochimica et Biophysica Acta, 1320(3), 256–264. doi:10.1016/S0005-2728(97)00029-7
  • Zhou, Q., Zhai, Y., Lou, J., Liu, M., Pang, X., & Sun, F. (2011). Thiabendazole inhibits ubiquinone reduction activity of mitochondrial respiratory Complex II via a water molecule mediated binding feature. Protein & Cell, 2(7), 531–542. doi:10.1007/s13238-011-1079-1
  • Zhu, J., Vinothkumar, K. R., & Hirst, J. (2016). Structure of mammalian respiratory Complex I. Nature, 536(7616), 354–358.
  • Zilberstein, D., Agmon, V., Schuldiner, S., & Padan, E. (1984). Escherichia coli intracellular pH, membrane potential, and cell growth. Journal of Bacteriology, 158(1), 246–252.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.