379
Views
10
CrossRef citations to date
0
Altmetric
Review Article

Transient protein–protein complexes in base excision repair

, , &
Pages 4407-4418 | Received 11 Oct 2018, Accepted 23 Nov 2018, Published online: 31 Dec 2018

References

  • Acuner Ozbabacan, S. E., Engin, H. B., Gursoy, A., & Keskin, O. (2011). Transient protein–protein interactions. Protein Engineering, Design and Selection, 24(9), 635–648. doi: 10.1093/protein/gzr025
  • Alemasova, E. E., Moor, N. A., Naumenko, K. N., Kutuzov, M. M., Sukhanova, M. V., Pestryakov, P. E., & Lavrik, O. I. (2016). Y-box-binding protein 1 as a non-canonical factor of base excision repair. Biochimica et Biophysica Acta - Proteins and Proteomics, 1864(12), 1631–1640. doi: 10.1016/j.bbapap.2016.08.012
  • Alemasova, E. E., Naumenko, K. N., Moor, N. A., & Lavrik, O. I. (2017). Y-box-binding protein 1 stimulates abasic site cleavage. Biochemistry (Moscow), 82(12), 1521–1528. doi: 10.1134/S0006297917120112
  • Almeida, K. H., & Sobol, R. W. (2007). A unified view of base excision repair: Lesion-dependent protein complexes regulated by post-translational modification. DNA Repair, 6(6), 695–711. doi: 10.1016/j.dnarep.2007.01.009
  • Aravind, L., Walker, D. R., & Koonin, E. V. (1999). Conserved domains in DNA repair proteins and evolution of repair systems. Nucleic Acids Research, 27(5), 1223–1242.
  • Baba, D., Maita, N., Jee, J.-G., Uchimura, Y., Saitoh, H., Sugasawa, K., … Shirakawa, M. (2005). Crystal structure of thymine DNA glycosylase conjugated to SUMO-1. Nature, 435(7044), 979–982.
  • Baba, D., Maita, N., Jee, J.-G., Uchimura, Y., Saitoh, H., Sugasawa, K., … Shirakawa, M. (2006). Crystal structure of SUMO-3-modified thymine-DNA glycosylase. Journal of Molecular Biology, 359(1), 137–147.
  • Back, J. H., Chung, J. H., Park, Y. I., Kim, K.-S., & Han, Y. S. (2003). Endonuclease IV enhances base excision repair of endonuclease III from Methanobacterium thermoautotrophicum. DNA Repair, 2(5), 455–470. doi: 10.1016/S1568-7864(02)00243-4
  • Baldwin, M. R., & O’Brien, P. J. (2009). Human AP endonuclease 1 stimulates multiple-turnover base excision by alkyladenine DNA glycosylase. Biochemistry, 48(25), 6022–6033. doi: 10.1021/bi900517y
  • Baldwin, M. R., & O’Brien, P. J. (2010). Nonspecific DNA binding and coordination of the first two steps of base excision repair. Biochemistry, 49(36), 7879–7891.
  • Baldwin, M. R., & O’Brien, P. J. (2012). Defining the functional footprint for recognition and repair of deaminated DNA. Nucleic Acids Research, 40(22), 11638–11647.
  • Balliano, A., Hao, F., Njeri, C., Balakrishnan, L., & Hayes, J. J. (2017). HMGB1 stimulates activity of polymerase β on nucleosome substrates. Biochemistry, 56(4), 647–656. doi: 10.1021/acs.biochem.6b00569
  • Barker, A., Fickert, R., Oehler, S., & Müller-Hill, B. (1998). Operator search by mutant Lac repressors. Journal of Molecular Biology, 278(3), 549–558.
  • Bennett, R. A. O., Wilson, D. M., Wong, D., & Demple, B. (1997). Interaction of human apurinic endonuclease and DNA polymerase β in the base excision repair pathway. Proceedings of the National Academy of Sciences of the United States of America, 94(14), 7166–7169. doi: 10.1073/pnas.94.14.7166
  • Bessho, T. (1999). Nucleotide excision repair 3′ endonuclease XPG stimulates the activity of base excision repair enzyme thymine glycol DNA glycosylase. Nucleic Acids Research, 27(4), 979–983. doi: 10.1093/nar/27.4.979
  • Bhakat, K. K., Mokkapati, S. K., Boldogh, I., Hazra, T. K., & Mitra, S. (2006). Acetylation of human 8-oxoguanine-DNA glycosylase by p300 and its role in 8-oxoguanine repair in vivo. Molecular and Cellular Biology, 26(5), 1654–1665.
  • Bharati, S., Krokan, H. E., Kristiansen, L., Otterlei, M., & Slupphaug, G. (1998). Human mitochondrial uracil-DNA glycosylase preform (UNG1) is processed to two forms one of which is resistant to inhibition by AP sites. Nucleic Acids Research, 26(21), 4953–4959. doi: 10.1093/nar/26.21.4953
  • Bravard, A., Vacher, M., Moritz, E., Vaslin, L., Hall, J., Epe, B., & Radicella, J. P. (2009). Oxidation status of human OGG1-S326C polymorphic variant determines cellular DNA repair capacity. Cancer Research, 69(8), 3642–3649. doi: 10.1158/0008-5472.CAN-08-3943
  • Bruner, S. D., Norman, D. P. G., & Verdine, G. L. (2000). Structural basis for recognition and repair of the endogenous mutagen 8-oxoguanine in DNA. Nature, 403(6772), 859–866.
  • Caldecott, K. W., Aoufouchi, S., Johnson, P., & Shall, S. (1996). XRCC1 polypeptide interacts with DNA polymerase β and possibly poly (ADP-ribose) polymerase, and DNA ligase III is a novel molecular 'nick-sensor' in vitro. Nucleic Acids Research, 24(22), 4387–4394. doi: 10.1093/nar/24.22.4387
  • Caldecott, K. W., McKeown, C. K., Tucker, J. D., Ljungquist, S., & Thompson, L. H. (1994). An interaction between the mammalian DNA repair protein XRCC1 and DNA ligase III. Molecular and Cellular Biology, 14(1), 68–76.
  • Chembazhi, U. V., Patil, V. V., Sah, S., Reeve, W., Tiwari, R. P., Woo, E., & Varshney, U. (2017). Uracil DNA glycosylase (UDG) activities in Bradyrhizobium diazoefficiens: Characterization of a new class of UDG with broad substrate specificity. Nucleic Acids Research, 45(10), 5863–5876. doi: 10.1093/nar/gkx209
  • Coey, C. T., Fitzgerald, M. E., Maiti, A., Reiter, K. H., Guzzo, C. M., Matunis, M. J., & Drohat, A. C. (2014). E2-mediated small ubiquitin-like modifier (SUMO) modification of thymine DNA glycosylase is efficient but not selective for the enzyme-product complex. Journal of Biological Chemistry, 289(22), 15810–15819. doi: 10.1074/jbc.M114.572081
  • Collins, S. R., Miller, K. M., Maas, N. L., Roguev, A., Fillingham, J., Chu, C. S., … Krogan, N. J. (2007). Functional dissection of protein complexes involved in yeast chromosome biology using a genetic interaction map. Nature, 446(7137), 806–810. doi: 10.1038/nature05649
  • Conlon, K. A., Miller, H., Rosenquist, T. A., Zharkov, D. O., & Berrios, M. (2005). The murine DNA glycosylase NEIL2 (mNEIL2) and human DNA polymerase beta bind microtubules in situ and in vitro. DNA Repair, 4(4), 419–431.
  • Conlon, K. A., Zharkov, D. O., & Berrios, M. (2004). Cell cycle regulation of the murine 8-oxoguanine DNA glycosylase (mOGG1): mOGG1 associates with microtubules during interphase and mitosis. DNA Repair, 3(12), 1601–1615. doi: 10.1016/j.dnarep.2004.06.011
  • Contesto-Richefeu, C., Tarbouriech, N., Brazzolotto, X., Betzi, S., Morelli, X., Burmeister, W. P., & Iseni, F. (2014). Crystal structure of the vaccinia virus DNA polymerase holoenzyme subunit D4 in complex with the A20 N-terminal domain. PLoS Pathogens, 10(3), e1003978. doi: 10.1371/journal.ppat.1003978
  • D’Errico, M., Parlanti, E., Teson, M., Bernardes de Jesus, B. M., Degan, P., Calcagnile, A., … Dogliotti, E. (2006). New functions of XPC in the protection of human skin cells from oxidative damage. The EMBO Journal, 25(18), 4305–4315.
  • Dantzer, F., Luna, L., Bjorås, M., & Seeberg, E. (2002). Human OGG1 undergoes serine phosphorylation and associates with the nuclear matrix and mitotic chromatin in vivo. Nucleic Acids Research, 30(11), 2349–2357. doi: 10.1093/nar/30.11.2349
  • DeLano, W. L. (2002). The PyMOL molecular graphics system. New York, NY: Schrödinger, LLC. Retrieved from http://www.pymol.org.
  • Eisen, J. A., & Hanawalt, P. C. (1999). A phylogenomic study of DNA repair genes, proteins, and processes. Mutation Research - DNA Repair, 435(3), 171–213. doi: 10.1016/S0921-8777(99)00050-6
  • Esadze, A., Rodriguez, G., Cravens, S. L., & Stivers, J. T. (2017). AP-endonuclease 1 accelerates turnover of human 8-oxoguanine DNA glycosylase by preventing retrograde binding to the abasic-site product. Biochemistry, 56(14), 1974–1986. doi: 10.1021/acs.biochem.7b00017
  • Ewing, R. M., Chu, P., Elisma, F., Li, H., Taylor, P., Climie, S., … Figeys, D. (2007). Large-scale mapping of human protein–protein interactions by mass spectrometry. Molecular Systems Biology, 3, 89.
  • Fan, J., Wilson, D. M. (2005). Protein–protein interactions and posttranslational modifications in mammalian base excision repair. Free Radical Biology and Medicine, 38(9), 1121–1138. doi: 10.1016/j.freeradbiomed.2005.01.012
  • Fárez-Vidal, M. E., Gallego, C., Ruiz-Pérez, L. M., & González-Pacanowska, D. (2001). Characterization of uracil-DNA glycosylase activity from Trypanosoma cruzi and its stimulation by AP endonuclease. Nucleic Acids Research, 29, 1549–1555.
  • Fernandez-Leiro, R., & Scheres, S. H. W. (2016). Unravelling biological macromolecules with cryo-electron microscopy. Nature, 537(7620), 339–346. doi: 10.1038/nature19948
  • Fickert, R., & Müller-Hill, B. (1992). How Lac repressor finds lac operator in vitro. Journal of Molecular Biology, 226(1), 59–68.
  • Fitzgerald, M. E., & Drohat, A. C. (2008). Coordinating the initial steps of base excision repair: Apurinic/apyrimidinic endonuclease 1 actively stimulates thymine DNA glycosylase by disrupting the product complex. Journal of Biological Chemistry, 283(47), 32680–32690. doi: 10.1074/jbc.M805504200
  • Friedberg, E. C., Walker, G. C., Siede, W., Wood, R. D., Schultz, R. A., & Ellenberger, T. (2006). DNA repair and mutagenesis. Washington, DC: ASM Press.
  • Fromme, J. C., Banerjee, A., Huang, S. J., & Verdine, G. L. (2004). Structural basis for removal of adenine mispaired with 8-oxoguanine by MutY adenine DNA glycosylase. Nature, 427(6975), 652–656.
  • Grima, R., Walter, N. G., & Schnell, S. (2014). Single-molecule enzymology à la Michaelis–Menten. The FEBS Journal, 281(2), 518–530.
  • Grin, I. R., Khodyreva, S. N., Nevinsky, G. A., & Zharkov, D. O. (2006). Deoxyribophosphate lyase activity of mammalian endonuclease VIII-like proteins. FEBS Letters, 580(20), 4916–4922.
  • Hang, B., Downing, G., Guliaev, A. B., & Singer, B. (2002). Novel activity of Escherichia coli mismatch uracil-DNA glycosylase (Mug) excising 8-(hydroxymethyl)-3,N4-ethenocytosine, a potential product resulting from glycidaldehyde reaction. Biochemistry, 41(7), 2158–2165. doi: 10.1021/bi011542b
  • Hang, B., & Guliaev, A. B. (2007). Substrate specificity of human thymine-DNA glycosylase on exocyclic cytosine adducts. Chemico-Biological Interactions, 165(3), 230–238. doi: 10.1016/j.cbi.2006.12.013
  • Hang, B., & Singer, B. (2003). Protein–protein interactions involving DNA glycosylases. Chemical Research in Toxicology, 16(10), 1181–1195. doi: 10.1021/tx030020p
  • Hardeland, U., Steinacher, R., Jiricny, J., & Schär, P. (2002). Modification of the human thymine-DNA glycosylase by ubiquitin-like proteins facilitates enzymatic turnover. The EMBO Journal, 21(6), 1456–1464. doi: 10.1093/emboj/21.6.1456
  • Hegde, V., Wang, M., & Deutsch, W. A. (2004). Human ribosomal protein S3 interacts with DNA base excision repair proteins hAPE/Ref-1 and hOGG1. Biochemistry, 43(44), 14211–14217.
  • Hill, J. W., & Evans, M. K. (2006). Dimerization and opposite base-dependent catalytic impairment of polymorphic S326C OGG1 glycosylase. Nucleic Acids Research, 34(5), 1620–1632. doi: 10.1093/nar/gkl060
  • Hill, J. W., Hazra, T. K., Izumi, T., & Mitra, S. (2001). Stimulation of human 8-oxoguanine-DNA glycosylase by AP-endonuclease: Potential coordination of the initial steps in base excision repair. Nucleic Acids Research, 29(2), 430–438. doi: 10.1093/nar/29.2.430
  • Hosfield, D. J., Guan, Y., Haas, B. J., Cunningham, R. P., & Tainer, J. A. (1999). Structure of the DNA repair enzyme endonuclease IV and its DNA complex: Double-nucleotide flipping at abasic sites and three-metal-ion catalysis. Cell, 98(3), 397–408. doi: 10.1016/S0092-8674(00)81968-6
  • Hutchins, J. R. A., Toyoda, Y., Hegemann, B., Poser, I., Hériché, J.-K., Sykora, M. M., … Peters, J.-M. (2010). Systematic analysis of human protein complexes identifies chromosome segregation proteins. Science, 328(5978), 593–599. doi: 10.1126/science.1181348
  • Huttlin, E. L., Bruckner, R. J., Paulo, J. A., Cannon, J. R., Ting, L., Baltier, K., … Harper, J. W. (2017). Architecture of the human interactome defines protein communities and disease networks. Nature, 545(7655), 505–509. doi: 10.1038/nature22366
  • Izumi, T., Wiederhold, L. R., Roy, G., Roy, R., Jaiswal, A., Bhakat, K. K., … Hazra, T. K. (2003). Mammalian DNA base excision repair proteins: Their interactions and role in repair of oxidative DNA damage. Toxicology, 193(1–2), 43–65. doi: 10.1016/S0300-483X(03)00289-0
  • Jin, J., Hwang, B.-J., Chang, P.-W., Toth, E. A., & Lu, A.-L. (2014). Interaction of apurinic/apyrimidinic endonuclease 2 (Apn2) with Myh1 DNA glycosylase in fission yeast. DNA Repair, 15, 1–10. doi: 10.1016/j.dnarep.2014.01.001
  • Kamenisch, Y., Fousteri, M., Knoch, J., von Thaler, A.-K., Fehrenbacher, B., Kato, H., … Berneburg, M. (2010). Proteins of nucleotide and base excision repair pathways interact in mitochondria to protect from loss of subcutaneous fat, a hallmark of aging. The Journal of Experimental Medicine, 207(2), 379–390. doi: 10.1084/jem.20091834
  • Kasymov, R. D., Grin, I. R., Endutkin, A. V., Smirnov, S. L., Ishchenko, A. A., Saparbaev, M. K., & Zharkov, D. O. (2013). Excision of 8-oxoguanine from methylated CpG dinucleotides by human 8-oxoguanine DNA glycosylase. FEBS Letters, 587(18), 3129–3134.
  • Katchalski-Katzir, E., Shariv, I., Eisenstein, M., Friesem, A. A., Aflalo, C., & Vakser, I. A. (1992). Molecular surface recognition: Determination of geometric fit between proteins and their ligands by correlation techniques. Proceedings of the National Academy of Sciences of the United States of America, 89(6), 2195–2199. doi: 10.1073/pnas.89.6.2195
  • Kaur, M. P., Guggenheim, E. J., Pulisciano, C., Akbar, S., Kershaw, R. M., & Hodges, N. J. (2014). Cellular accumulation of Cys326-OGG1 protein complexes under conditions of oxidative stress. Biochemical and Biophysical Research Communications, 447(1), 12–18. doi: 10.1016/j.bbrc.2014.03.044
  • Kavli, B., Sundheim, O., Akbari, M., Otterlei, M., Nilsen, H., Skorpen, F., … Slupphaug, G. (2002). hUNG2 is the major repair enzyme for removal of uracil from U:A matches, U:G mismatches, and U in single-stranded DNA, with hSMUG1 as a broad specificity backup. Journal of Biological Chemistry, 277(42), 39926–39936. doi: 10.1074/jbc.M207107200
  • Kladova, O. A., Bazlekowa-Karaban, M., Baconnais, S., Piétrement, O., Ishchenko, A. A., Matkarimov, B. T., … Saparbaev, M. (2018). The role of the N-terminal domain of human apurinic/apyrimidinic endonuclease 1, APE1, in DNA glycosylase stimulation. DNA Repair, 64, 10–25. doi: 10.1016/j.dnarep.2018.02.001
  • Klungland, A., Hoss, M., Gunz, D., Constantinou, A., Clarkson, S. G., Doetsch, P. W., … Lindahl, T. (1999). Base excision repair of oxidative DNA damage activated by XPG protein. Molecular Cell, 3(1), 33–42.
  • Ko, R., & Bennett, S. E. (2005). Physical and functional interaction of human nuclear uracil-DNA glycosylase with proliferating cell nuclear antigen. DNA Repair, 4(12), 1421–1431. doi: 10.1016/j.dnarep.2005.08.006
  • Krogan, N. J., Cagney, G., Yu, H., Zhong, G., Guo, X., Ignatchenko, A., … Greenblatt, J. F. (2006). Global landscape of protein complexes in the yeast Saccharomyces cerevisiae. Nature, 440(7084), 637–643. doi: 10.1038/nature04670
  • Kropachev, K. Y., Zharkov, D. O., & Grollman, A. P. (2006). Catalytic mechanism of Escherichia coli endonuclease VIII: Roles of the intercalation loop and the zinc finger. Biochemistry, 45(39), 12039–12049.
  • Kubota, Y., Nash, R. A., Klungland, A., Schär, P., Barnes, D. E., & Lindahl, T. (1996). Reconstitution of DNA base excision-repair with purified human proteins: Interaction between DNA polymerase β and the XRCC1 protein. EMBO Journal, 15(23), 6662–6670. doi: 10.1002/j.1460-2075.1996.tb01056.x
  • Kuznetsova, A. A., Kuznetsov, N. A., Ishchenko, A. A., Saparbaev, M. K., & Fedorova, O. S. (2014). Pre-steady-state fluorescence analysis of damaged DNA transfer from human DNA glycosylases to AP endonuclease APE1. Biochimica et Biophysica Acta - General Subjects, 1840(10), 3042–3051. doi: 10.1016/j.bbagen.2014.07.016
  • Latham, K. A., Rajendran, S., Carmical, J. R., Lee, J. C., & Lloyd, R. S. (1996). T4 endonuclease V exists in solution as a monomer and binds to target sites as a monomer. Biochimica et Biophysica Acta - Protein Structure and Molecular Enzymology, 1292(2), 324–334. doi: 10.1016/0167-4838(95)00224-3
  • Lee, A. J., & Wallace, S. S. (2017). Hide and seek: How do DNA glycosylases locate oxidatively damaged DNA bases amidst a sea of undamaged bases?. Free Radical Biology and Medicine, 107, 170–178. doi: 10.1016/j.freeradbiomed.2016.11.024
  • Lee, C.-Y., Bai, H., Houle, R., Wilson, G. M., & Lu, A.-L. (2004). An Escherichia coli MutY mutant without the six-helix barrel domain is a dimer in solution and assembles cooperatively into multisubunit complexes with DNA. Journal of Biological Chemistry, 279(50), 52653–52663. doi: 10.1074/jbc.M405271200
  • Lehner, B., Semple, J. I., Brown, S. E., Counsell, D., Campbell, R. D., & Sanderson, C. M. (2004). Analysis of a high-throughput yeast two-hybrid system and its use to predict the function of intracellular proteins encoded within the human MHC class III region. Genomics, 83(1), 153–167. doi: 10.1016/S0888-7543(03)00235-0
  • Lieberman, B. A., & Nordeen, S. K. (1997). DNA intersegment transfer, how steroid receptors search for a target site. Journal of Biological Chemistry, 272(2), 1061–1068. doi: 10.1074/jbc.272.2.1061
  • Liu, X., Choudhury, S., & Roy, R. (2003). In vitro and in vivo dimerization of human endonuclease III stimulates its activity. The Journal of Biological Chemistry, 278(50), 50061–50069.
  • Liu, Z., Gong, Z., Dong, X., & Tang, C. (2016). Transient protein–protein interactions visualized by solution NMR. Biochimica et Biophysica Acta - Proteins and Proteomics, 1864(1), 115–122. doi: 10.1016/j.bbapap.2015.04.009
  • Lloyd, R. S., Dodson, M. L., Gruskin, E. A., & Robberson, D. L. (1987). T4 endonuclease V promotes the formation of multimeric DNA structures. Mutation Research, 183(2), 109–115.
  • Luncsford, P. J., Manvilla, B. A., Patterson, D. N., Malik, S. S., Jin, J., Hwang, B.-J., … Toth, E. A. (2013). Coordination of MYH DNA glycosylase and APE1 endonuclease activities via physical interactions. DNA Repair, 12(12), 1043–1052.
  • Maher, R. L., Vallur, A. C., Feller, J. A., & Bloom, L. B. (2007). Slow base excision by human alkyladenine DNA glycosylase limits the rate of formation of AP sites and AP endonuclease 1 does not stimulate base excision. DNA Repair, 6(1), 71–81. doi: 10.1016/j.dnarep.2006.09.001
  • Marenstein, D. R., Chan, M. K., Altamirano, A., Basu, A. K., Boorstein, R. J., Cunningham, R. P., & Teebor, G. W. (2003). Substrate specificity of human endonuclease III (hNTH1): Effect of human APE1 on hNTH1 activity. Journal of Biological Chemistry, 278(11), 9005–9012. doi: 10.1074/jbc.M212168200
  • Marenstein, D. R., Ocampo, M. T. A., Chan, M. K., Altamirano, A., Basu, A. K., Boorstein, R. J., … Teebor, G. W. (2001). Stimulation of human endonuclease III by Y box-binding protein 1 (DNA-binding protein B): Interaction between. Journal of Biological Chemistry, 276, 21242–21249. doi: 10.1074/jbc.M101594200
  • Marsin, S., Vidal, A. E., Sossou, M., Ménissier-de Murcia, J., Le Page, F., Boiteux, S., … Radicella, J. P. (2003). Role of XRCC1 in the coordination and stimulation of oxidative DNA damage repair initiated by the DNA glycosylase hOGG1. Journal of Biological Chemistry, 278(45), 44068–44074. doi: 10.1074/jbc.M306160200
  • Mechetin, G. V., & Zharkov, D. O. (2014). Mechanisms of diffusional search for specific targets by DNA-dependent proteins. Biochemistry (Moscow), 79(6), 496–505. doi: 10.1134/S0006297914060029
  • Mokkapati, S. K., Wiederhold, L., Hazra, T. K., & Mitra, S. (2004). Stimulation of DNA glycosylase activity of OGG1 by NEIL1: Functional collaboration between two human DNA glycosylases. Biochemistry, 43(36), 11596–11604. doi: 10.1021/bi049097i
  • Mol, C. D., Izumi, T., Mitra, S., & Tainer, J. A. (2000). DNA-bound structures and mutants reveal abasic DNA binding by APE1 and DNA repair coordination. Nature, 403(6768), 451–456. doi: 10.1038/35000249
  • Moor, N. A., & Lavrik, O. I. (2018). Protein–protein interactions in DNA base excision repair. Biochemistry (Moscow), 83(4), 411–422. doi: 10.1134/S0006297918040120
  • Moor, N. A., Vasil'eva, I. A., Anarbaev, R. O., Antson, A. A., & Lavrik, O. I. (2015). Quantitative characterization of protein–protein complexes involved in base excision DNA repair. Nucleic Acids Research, 43(12), 6009–6022. doi: 10.1093/nar/gkv569
  • Nickell, C., & Lloyd, R. S. (1991). Mutations in endonuclease V that affect both protein–protein association and target site location. Biochemistry, 30(35), 8638–8648.
  • Nilsen, H., Haushalter, K. A., Robins, P., Barnes, D. E., Verdine, G. L., & Lindahl, T. (2001). Excision of deaminated cytosine from the vertebrate genome: Role of the SMUG1 uracil-DNA glycosylase. The EMBO Journal, 20(15), 4278–4286.
  • Parikh, S. S., Mol, C. D., Slupphaug, G., Bharati, S., Krokan, H. E., & Tainer, J. A. (1998). Base excision repair initiation revealed by crystal structures and binding kinetics of human uracil-DNA glycosylase with DNA. The EMBO Journal, 17(17), 5214–5226. doi: 10.1093/emboj/17.17.5214
  • Parikh, S. S., Putnam, C. D., & Tainer, J. A. (2000). Lessons learned from structural results on uracil-DNA glycosylase. Mutation Research, 460(3-4), 183–199.
  • Perkins, J. R., Diboun, I., Dessailly, B. H., Lees, J. G., & Orengo, C. (2010). Transient protein–protein interactions: Structural, functional, and network properties. Structure, 18(10), 1233–1243. doi: 10.1016/j.str.2010.08.007
  • Pope, M. A., Chmiel, N. H., & David, S. S. (2005). Insight into the functional consequences of hMYH variants associated with colorectal cancer: Distinct differences in the adenine glycosylase activity and the response to AP endonucleases of Y150C and G365D murine MYH. DNA Repair, 4(3), 315–325. doi: 10.1016/j.dnarep.2004.10.003
  • Pope, M. A., Porello, S. L., & David, S. S. (2002). Escherichia coli apurinic–apyrimidinic endonucleases enhance the turnover of the adenine glycosylase MutY with G:A substrates. Journal of Biological Chemistry, 277(25), 22605–22615. doi: 10.1074/jbc.M203037200
  • Porello, S. L., Leyes, A. E., & David, S. S. (1998). Single-turnover and pre-steady-state kinetics of the reaction of the adenine glycosylase MutY with mismatch-containing DNA substrates. Biochemistry, 37(42), 14756–14764. doi: 10.1021/bi981594+
  • Prasad, R., Liu, Y., Deterding, L. J., Poltoratsky, V. P., Kedar, P. S., Horton, J. K., … Wilson, S. H. (2007). HMGB1 is a cofactor in mammalian base excision repair. Molecular Cell, 27(5), 829–841.
  • Prasad, R., Singhal, R. K., Srivastava, D. K., Molina, J. T., Tomkinson, A. E., & Wilson, S. H. (1996). Specific interaction of DNA polymerase β and DNA ligase I in a multiprotein base excision repair complex from bovine testis. Journal of Biological Chemistry, 271(27), 16000–16007. doi: 10.1074/jbc.271.27.16000
  • Privezentzev, C. V., Saparbaev, M., & Laval, J. (2001). The HAP1 protein stimulates the turnover of human mismatch-specific thymine-DNA-glycosylase to process 3,N4-ethenocytosine residues. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 480-481, 277–284. doi: 10.1016/S0027-5107(01)00186-5
  • Purmal, A. A., Lampman, G. W., Pourmal, E. I., Melamede, R. J., Wallace, S. S., & Kow, Y. W. (1994). Uracil DNA N-glycosylase distributively interacts with duplex polynucleotides containing repeating units of either TGGCCAAGCU or TGGCCAAGCTTGGCCAAGCU. The Journal of Biological Chemistry, 269(35), 22046–22053.
  • Rabow, L., Venkataraman, R., & Kow, Y. W. (2001). Mechanism of action of Escherichia coli formamidopyrimidine N-glycosylase: Role of K155 in substrate binding and product release. Progress in Nucleic Acids Research and Molecular Biology, 68, 223–234.
  • Rosenquist, T. A., Zaika, E., Fernandes, A. S., Zharkov, D. O., Miller, H., & Grollman, A. P. (2003). The novel DNA glycosylase, NEIL1, protects mammalian cells from radiation-mediated cell death. DNA Repair, 2(5), 581–591. doi: 10.1016/S1568-7864(03)00025-9
  • Rowland, M. M., Schonhoft, J. D., McKibbin, P. L., David, S. S., & Stivers, J. T. (2014). Microscopic mechanism of DNA damage searching by hOGG1. Nucleic Acids Research, 42(14), 9295–9303. doi: 10.1093/nar/gku621
  • Ruusala, T., & Crothers, D. M. (1992). Sliding and intermolecular transfer of the lac repressor: Kinetic perturbation of a reaction intermediate by a distant DNA sequence. Proceedings of the National Academy of Sciences of the United States of America, 89(11), 4903–4907. doi: 10.1073/pnas.89.11.4903
  • Saitoh, T., Shinmura, K., Yamaguchi, S., Tani, M., Seki, S., Murakami, H., … Yokota, J. (2001). Enhancement of OGG1 protein AP lyase activity by increase of APEX protein. Mutation Research, 486(1), 31–40.
  • Sassa, A., Çağlayan, M., Dyrkheeva, N. S., Beard, W. A., & Wilson, S. H. (2014). Base excision repair of tandem modifications in a methylated CpG dinucleotide. Journal of Biological Chemistry, 289(20), 13996–14008. doi: 10.1074/jbc.M114.557769
  • Schormann, N., Grigorian, A., Samal, A., Krishnan, R., DeLucas, L., & Chattopadhyay, D. (2007). Crystal structure of vaccinia virus uracil-DNA glycosylase reveals dimeric assembly. BMC Structural Biology, 7(1), 45. doi: 10.1186/1472-6807-7-45
  • Shishkina, I. G., Bulychev, N. V., Grollman, A. P., & Johnson, F. (1997). Affinity chromatography of mismatch-specific DNA-glycosylases. International Journal of Bio-Chromatography, 3, 329–345.
  • Sidorenko, V. S., Grollman, A. P., Jaruga, P., Dizdaroglu, M., & Zharkov, D. O. (2009). Substrate specificity and excision kinetics of natural polymorphic variants and phosphomimetic mutants of human 8-oxoguanine-DNA glycosylase. FEBS Journal, 276(18), 5149–5162. doi: 10.1111/j.1742-4658.2009.07212.x
  • Sidorenko, V. S., Nevinsky, G. A., & Zharkov, D. O. (2007). Mechanism of interaction between human 8-oxoguanine-DNA glycosylase and AP endonuclease. DNA Repair, 6(3), 317–328.
  • Sidorenko, V. S., Nevinsky, G. A., & Zharkov, D. O. (2008). Specificity of stimulation of human 8-oxoguanine-DNA glycosylase by AP endonuclease. Biochemical and Biophysical Research Communications, 368(1), 175–179. doi: 10.1016/j.bbrc.2008.01.076
  • Smet-Nocca, C., Wieruszeski, J.-M., Léger, H., Eilebrecht, S., & Benecke, A. (2011). SUMO-1 regulates the conformational dynamics of thymine-DNA glycosylase regulatory domain and competes with its DNA binding activity. BMC Biochemistry, 12(1), 4. doi: 10.1186/1471-2091-12-4
  • Stelzl, U., Worm, U., Lalowski, M., Haenig, C., Brembeck, F. H., Goehler, H., … Wanker, E. E. (2005). A human protein–protein interaction network: A resource for annotating the proteome. Cell, 122(6), 957–968. doi: 10.1016/j.cell.2005.08.029
  • Sung, J.-S., & Mosbaugh, D. W. (2000). Escherichia coli double-strand uracil-DNA glycosylase: Involvement in uracil-mediated DNA base excision repair and stimulation of activity by endonuclease IV. Biochemistry, 39(33), 10224–10235. doi: 10.1021/bi0007066
  • Tang, C., Iwahara, J., & Clore, G. M. (2006). Visualization of transient encounter complexes in protein–protein association. Nature, 444(7117), 383–386. doi: 10.1038/nature05201
  • Thakur, S., Dhiman, M., Tell, G., & Mantha, A. K. (2015). A review on protein–protein interaction network of APE1/Ref-1 and its associated biological functions. Cell Biochemistry and Function, 33(3), 101–112. doi: 10.1002/cbf.3100
  • Tovchigrechko, A., & Vakser, I. A. (2006). GRAMM-X public web server for protein–protein docking. Nucleic Acids Research, 34(Web Server), W310–W314. doi: 10.1093/nar/gkl206
  • Tuo, J., Chen, C., Zeng, X., Christiansen, M., & Bohr, V. A. (2002). Functional crosstalk between hOgg1 and the helicase domain of Cockayne syndrome group B protein. DNA Repair, 1(11), 913–927. doi: 10.1016/S1568-7864(02)00116-7
  • Vidal, A. E., Boiteux, S., Hickson, I. D., & Radicella, J. P. (2001a). XRCC1 coordinates the initial and late stages of DNA abasic site repair through protein–protein interactions. The EMBO Journal, 20(22), 6530–6539. doi: 10.1093/emboj/20.22.6530
  • Vidal, A. E., Hickson, I. D., Boiteux, S., & Radicella, J. P. (2001b). Mechanism of stimulation of the DNA glycosylase activity of hOGG1 by the major human AP endonuclease: Bypass of the AP lyase activity step. Nucleic Acids Research, 29(6), 1285–1292. doi: 10.1093/nar/29.6.1285
  • Waters, T. R., Gallinari, P., Jiricny, J., & Swann, P. F. (1999). Human thymine DNA glycosylase binds to apurinic sites in DNA but is displaced by human apurinic endonuclease 1. Journal of Biological Chemistry, 274(1), 67–74. doi: 10.1074/jbc.274.1.67
  • Waters, T. R., & Swann, P. F. (1998). Kinetics of the action of thymine DNA glycosylase. The Journal of Biological Chemistry, 273(32), 20007–20014.
  • Whitehouse, C. J., Taylor, R. M., Thistlethwaite, A., Zhang, H., Karimi-Busheri, F., Lasko, D. D., … Caldecott, K. W. (2001). XRCC1 stimulates human polynucleotide kinase activity at damaged DNA termini and accelerates DNA single-strand break repair. Cell, 104(1), 107–117. doi: 10.1016/S0092-8674(01)00195-7
  • Wiederhold, L., Leppard, J. B., Kedar, P., Karimi-Busheri, F., Rasouli-Nia, A., Weinfeld, M., … Hazra, T. K. (2004). AP endonuclease-independent DNA base excision repair in human cells. Molecular Cell, 15(2), 209–220. doi: 10.1016/j.molcel.2004.06.003
  • Wong, I., Bernards, A. S., Miller, J. K., & Wirz, J. A. (2003). A dimeric mechanism for contextual target recognition by MutY glycosylase. Journal of Biological Chemistry, 278(4), 2411–2418. doi: 10.1074/jbc.M209802200
  • Xia, L., Zheng, L., Lee, H.-W., Bates, S. E., Federico, L., Shen, B., & O'Connor, T. R. (2005). Human 3-methyladenine-DNA glycosylase: Effect of sequence context on excision, association with PCNA, and stimulation by AP endonuclease. Journal of Molecular Biology, 346(5), 1259–1274. doi: 10.1016/j.jmb.2005.01.014
  • Yang, H., Clendenin, W. M., Wong, D., Demple, B., Slupska, M. M., Chiang, J.-H., & Miller, J. H. (2001). Enhanced activity of adenine-DNA glycosylase (Myh) by apurinic/apyrimidinic endonuclease (Ape1) in mammalian base excision repair of an A/GO mismatch. Nucleic Acids Research, 29(3), 743–752. doi: 10.1093/nar/29.3.743
  • Zharkov, D. O. (2008). Base excision DNA repair. Cellular and Molecular Life Sciences: CMLS, 65(10), 1544–1565.
  • Zharkov, D. O., & Grollman, A. P. (1998). MutY DNA glycosylase: Base release and intermediate complex formation. Biochemistry, 37(36), 12384–12394.
  • Zharkov, D. O., & Grollman, A. P. (2005). The DNA trackwalkers: Principles of lesion search and recognition by DNA glycosylases. Mutation Research – Fundamental and Molecular Mechanisms of Mutagenesis, 577(1-2), 24–54. doi: 10.1016/j.mrfmmm.2005.03.011
  • Zharkov, D. O., Rosenquist, T. A., Gerchman, S. E., & Grollman, A. P. (2000). Substrate specificity and reaction mechanism of murine 8-oxoguanine-DNA glycosylase. Journal of Biological Chemistry, 275(37), 28607–28617. doi: 10.1074/jbc.M002441200

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.