363
Views
18
CrossRef citations to date
0
Altmetric
Research Article

Identification of potential inhibitors for Klebsiella pneumoniae carbapenemase-3: a molecular docking and dynamics study

, &
Pages 4601-4613 | Received 08 Oct 2018, Accepted 30 Nov 2018, Published online: 11 Jan 2019

References

  • Alba, J., Ishii, Y., Thomson, K., Moland, E. S., & Yamaguchi, K. (2005). Kinetics study of KPC-3, a plasmid-encoded class A carbapenem-hydrolyzing beta-lactamase. Antimicrobial Agents and Chemotherapy, 49(11), 4760–4762. doi:10.1128/AAC.49.11.4760-4762.2005
  • Arnold, R. S., Thom, K. A., Sharma, S., Phillips, M., Kristie Johnson, J., & Morgan, D. J. (2011). Emergence of Klebsiella pneumoniae carbapenemase-producing bacteria. Southern Medical Journal, 104(1), 40–45. doi:10.1097/SMJ.0b013e3181fd7d5a
  • Berendsen, H. J. C., Postama, J. P. M., van Gunsteren, W. F., & Hermans, J. (1981). Interaction models for water in relation to protein hydration. In B. Pullmann (Ed.), Intermolecular forces (pp. 331–342). Dordrecht, Netherlands: D. Reidel Publishing Company. doi: 10.1007/978-94-015-7658-1_21.
  • Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., … Bourne, P. E. (2000). The Protein Data Bank. Nucleic Acids Research, 28(1), 235–242. doi:10.1093/nar/28.1.235
  • Bradford, P. A., Bratu, S., Urban, C., Visalli, M., Mariano, N., Landman, D., … Quale, J. (2004). Emergence of carbapenem-resistant Klebsiella species possessing the class A carbapenem-hydrolyzing KPC-2 and inhibitor-resistant TEM-30 beta-lactamases in New York City. Clinical Infectious Diseases, 39(1), 55–60. doi:10.1086/421495
  • Brickmann, J., Goetze, T., Heiden, W., Moeckel, G., Reiling, S., Vollhardt, H., & Zachmann, C. D. (1995). Interactive visualization of molecular scenarios with MOLCAD/SYBYL. In J. E. Bowie (Ed.), Data visualization in molecular science – tools for insight and innovation (pp. 83–97). Reading, MA: Addison-Wesley Publications.
  • Cheng, F., Li, W., Zhou, Y., Shen, J., Wu, Z., Liu, G., … Tang, Y. (2012). admetSAR: A comprehensive source and free tool for assessment of chemical ADMET properties. Journal of Chemical Information and Modeling, 52(11), 3099–3105. doi:10.1021/ci300367a
  • Darden, T., York, D., & Pedersen, L. (1993). Particle mesh Ewald: An Nlog (N) method for Ewald sums in large systems. The Journal of Chemical Physics, 98(12), 10089–10092. doi:10.1063/1.464397
  • Ece, A., & Sevin, F. (2013). The discovery of potential cyclin A/CDK2 inhibitors: A combination of 3D QSAR pharmacophore modeling, virtual screening, and molecular docking studies. Medicinal Chemistry Research, 22(12), 5832–5843. doi:10.1007/s00044-013-0571-y
  • Eldridge, M. D., Murray, C. W., Auton, T. R., Paolini, G. V., & Mee, R. P. (1997). Empirical scoring functions: I. The development of a fast empirical scoring function to estimate the binding affinity of ligands in receptor complexes. Journal of Computer-Aided Molecular Design, 11(5), 425–445. doi: 10.1023/A:1007996124545.
  • Falagas, M. E., Lourida, P., Poulikakos, P., Rafailidis, P. I., & Tansarli, G. S. (2014). Antibiotic treatment of infections due to carbapenem-resistant Enterobacteriaceae: Systematic evaluation of the available evidence. Antimicrobial Agents and Chemotherapy, 58(2), 654–663. doi:10.1128/AAC.01222-13
  • Fletcher, R., & Powell, M. J. D. (1963). A rapidly convergent descent method for minimization. The Computer Journal, 6(2), 163–168. doi:10.1093/comjnl/6.2.163
  • Garcia-Fernandez, A., Villa, L., Carta, C., Venditti, C., Giordano, A., Venditti, M., … Carattoli, A. (2012). Klebsiella pneumoniae ST258 producing KPC-3 identified initially carries novel plasmids and OmpK36/OmpK35 porin variants. Antimicrobial Agents and Chemotherapy, 56, 2143–2145. doi:10.1128/AAC.05308-11
  • Gregory, C. J., Llata, E., Stine, N., Gould, C., Santiago, L. M., Vazquez, G. J., … Tomashek, K. M. (2010). Outbreak of carbapenem-resistant Klebsiella pneumoniae in Puerto Rico associated with a novel carbapenemase variant. Infection Control & Hospital Epidemiology, 31, 476–484. doi:10.1086/651670
  • Grundmann, H., Livermore, D. M., Giske, C. G., Canton, R., Rossolini, G. M., Campos, J., & Carmeli, Y. (2010). CNSE Working Group. Carbapenem-non-susceptible Enterobacteriaceae in Europe: Conclusions from a meeting of national experts. Eurosurveillance, 15, 19711. doi: 10.2807/ese.15.46.19711-en.
  • Hess, B., Bekker, H., Berendsen, H. J. C., & Fraaije, J. G. E. M. (1997). LINCS: A linear constraint solver for molecular simulations. Journal of Computational Chemistry, 18(12), 1463–1472. doi:10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H
  • Hess, B., Kutzner, C., van der Spoel, D., & Lindahl, E. (2008). GROMACS 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation. Journal of Chemical Theory and Computation, 4(3), 435–447. doi:10.1021/ct700301q
  • Hidalgo-Grass, C., Warburg, G., Temper, V., Benenson, S., Moses, A. E., Block, C., & Strahilevitz, J. (2012). KPC-9, a novel carbapenemase from clinical specimens in Israel. Antimicrobial Agents and Chemotherapy, 56(11), 6057–6059. doi:10.1128/AAC.01156-12
  • Hirsch, E. B., & Tam, V. H. (2010). Detection and treatment options for Klebsiella pneumoniae carbapenemases (KPCs): An emerging cause of multidrug-resistant infection. Antimicrobial Agents and Chemotherapy, 65, 1119–1125. doi:10.1093/jac/dkq108
  • Hoenigl, M., Valentin, T., Zarfel, G., Wuerstl, B., Leitner, E., Salzer, H. J. F., … Grisold, A. J. (2012). Nosocomial outbreak of Klebsiella pneumoniae carbapenemase-producing Klebsiella oxytoca in Austria. Antimicrobial Agents and Chemotherapy, 56(4), 2158–2161. doi:10.1128/AAC.05440-11
  • Hsu, K. C., Chen, Y. F., Lin, S. R., & Yang, J. M. (2011). iGEMDOCK: A graphical environment of enhancing GEMDOCK using pharmacological interactions and post-screening analysis. BMC Bioinformatics, 12, S33. doi:10.1186/1471-2105-12-S1-S33
  • Humphries, R. M., Yang, S., Hemarajata, P., Ward, K. W., Hindler, J. A., Miller, S. A., & Gregson, A. (2015). First report of ceftazidime–avibactam resistance in a KPC-3-expressing Klebsiella pneumoniae isolate. Antimicrobial Agents and Chemotherapy, 59(10), 6605–6607. doi:10.1128/AAC.01165-15
  • Irwin, J. J., & Shoichet, B. K. (2005). ZINC – a free database of commercially available compounds for virtual screening. Journal of Chemical Information and Modeling, 45(1), 177–182. doi: 10.1021/ci049714+.
  • Jain, A. N. (2003). Surflex: Fully automatic flexible molecular docking using a molecular similarity-based search engine. Journal of Medicinal Chemistry, 46(4), 499–511. doi:10.1021/jm020406h
  • Jones, G., Willett, P., & Glen, R. C. (1995). Molecular recognition of receptor sites using a genetic algorithm with a description of desolvation. Journal of Molecular Biology, 245(1), 43–53. doi:10.1016/s0022-2836(95)80037-9
  • Kaplan, W., & Littlejohn, T. G. (2001). Swiss-PDB Viewer (Deep View). Briefings in Bioinformatics, 2(2), 195–197. doi:10.1093/bib/2.2.195
  • Kassis-Chikhani, N., Frangeul, L., Drieux, L., Sengelin, C., Jarlier, V., Brisse, S., … Decré, D. (2013). Complete nucleotide sequence of the first KPC-2- and SHV-12-encoding IncX plasmid, pKpS90, from Klebsiella pneumoniae. Antimicrobial Agents and Chemotherapy, 57(1), 618–620. doi:10.1128/AAC.01712-12
  • Ke, W., Bethel, C. R., Thomson, J. M., Bonomo, R. A., & van den Akker, F. (2007). Crystal structure of KPC-2: Insights into carbapenemase activity in class A beta-lactamases. Biochemistry, 46(19), 5732–5740. doi:10.1021/bi700300u
  • Kumar, K. M., Anbarasu, A., & Ramaiah, S. (2014). Molecular docking and molecular dynamics studies on β-lactamases and penicillin binding proteins. Molecular BioSystems, 10(4), 891–900. doi:10.1039/C3MB70537D
  • Kumar, K. M., Lavanya, P., Anbarasu, A., & Ramaiah, S. (2014). Molecular dynamics and molecular docking studies on E166A point mutant, R274N/R276N double mutant, and E166A/R274N/R276N triple mutant forms of class A β-lactamases. Journal of Biomolecular Structure and Dynamics, 32(12), 1953–1968. doi:10.1080/07391102.2013.847804
  • Kumari, R., Kumar, R., & Lynn, A. (2014). Open source drug discovery consortium, Lynn A. g_mmpbsa – A GROMACS tool for high-throughput MM-PBSA calculations. Journal of Chemical Information and Modeling, 54(7), 1951–1962. doi:10.1021/ci500020m
  • Leavitt, A., Navon-Venezia, S., Chmelnitsky, I., Schwaber, M. J., & Carmeli, Y. (2007). Emergence of KPC-2 and KPC-3 in carbapenem-resistant Klebsiella pneumoniae strains in an Israeli hospital. Antimicrobial Agents and Chemotherapy, 51(8), 3026–3029. doi:10.1128/AAC.00299-07
  • Li, G., Wei, Q., Wang, Y., Du, X., Zhao, Y., & Jiang, X. (2011). Novel genetic environment of the plasmid-mediated KPC-3 gene detected in Escherichia coli and Citrobacter freundii isolates from China. European Journal of Clinical Microbiology & Infectious Diseases, 30, 575–580. doi:10.1007/s10096-010-1124-7
  • Li, Q., Cheng, T., Wang, Y., & Bryant, S. H. (2010). PubChem as a public resource for drug discovery. Drug Discovery Today, 15(23–24), 1052–1057. doi:10.1016/j.drudis.2010.10.003
  • Malathi, K., Anbarasu, A., & Ramaiah, S. (2017). Exploring the resistance mechanism of imipenem in carbapenem hydrolysing class D beta-lactamases OXA-143 and its variant OXA-231 (D224A) expressing Acinetobacter baumannii: An in-silico approach. Computational Biology and Chemistry, 67, 1–8. doi:10.1016/j.compbiolchem.2016.12.001
  • Malathi, K., & Ramaiah, S. (2016). Molecular docking and molecular dynamics studies to identify potential OXA-10 extended spectrum β-lactamase non-hydrolysing inhibitors for Pseudomonas aeruginosa. Cell Biochemistry and Biophysics, 74(2), 141–155. doi:10.1007/s12013-016-0735-8
  • Marchese, A., Coppo, E., Barbieri, R., & Debbia, E. (2010). Emergence of KPC-2 carbapenemase-producing Klebsiella pneumoniae strains and spread of an isolate of sequence type 258 in the neuro-rehabilitation unit of an Italian hospital. Journal of Chemotherapy, 22(3), 212–214. doi:10.1179/joc.2010.22.3.212
  • Mascarenhas, N. M., & Ghoshal, N. (2008). An efficient tool for identifying inhibitors based on 3D-QSAR and docking using feature-shape pharmacophore of biologically active conformation – A case study with CDK2/CyclinA. European Journal of Medicinal Chemistry, 43(12), 2807–2818. doi:10.1016/j.ejmech.2007.10.016
  • Mehta, S. C., Rice, K., & Palzkill, T. (2015). Natural variants of the KPC-2 carbapenemase have evolved increased catalytic efficiency for ceftazidime hydrolysis at the cost of enzyme stability. PLOS Pathogens, 11(6), e1004949. doi:10.1371/journal.ppat.1004949
  • Meng, E. C., Shoichet, B. K., & Kuntz, I. D. (1992). Automated docking with grid-based energy evaluation. Journal of Computational Chemistry, 13(4), 505–524. doi:10.1002/jcc.540130412
  • Mezzatesta, M. L., Gona, F., Caio, C., Petrolito, V., Sciortino, D., Sciacca, A., … Stefani, S. (2011). Outbreak of KPC-3-producing, and colistin-resistant, Klebsiella pneumoniae infections in two Sicilian hospitals. Clinical Microbiology and Infection, 17(9), 1444–1447. doi:10.1111/j.1469-0691.2011.03572.x
  • Muegge, I., & Martin, Y. C. (1999). A general and fast scoring function for protein–ligand interactions: A simplified potential approach. Journal of Medicinal Chemistry, 42(5), 791–804. doi:10.1021/jm980536j
  • Oostenbrink, C., Villa, A., Mark, A. E., & van Gunsteren, W. F. (2004). A biomolecular force field based on the free enthalpy of hydration and solvation: The GROMOS force-field parameter sets 53A5 and 53A6. Journal of Computational Chemistry, 25(13), 1656–1676. doi:10.1002/jcc.20090
  • Papp-Wallace, K. M., Bethel, C. R., Distler, A. M., Kasuboski, C., Taracila, M., & Bonomo, R. A. (2010). Inhibitor resistance in the KPC-2 beta-lactamase, a preeminent property of this class A beta-lactamase. Antimicrobial Agents and Chemotherapy, 54(2), 890–897. doi:10.1128/AAC.00693-09
  • Pearlman, D. A., Case, D. A., Caldwell, J. W., Ross, W. S., Cheatham, T. E., DeBolt, S., … Kollman, P. (1995). AMBER, a package of computer programs for applying molecular mechanics, normal mode analysis, molecular dynamics and free energy calculations to simulate the structural and energetic properties of molecules. Computer Physics Communications, 91(1-3), 1–41. doi:10.1016/0010-4655(95)00041-D
  • Piche, S. W. (1994). Steepest descent algorithms for neural network controllers and filters. IEEE Transactions on Neural Networks, 5(2), 198–212. doi:10.1109/72.279185
  • Podschun, R., & Ullmann, U. (1998). Klebsiella spp. as nosocomial pathogens: Epidemiology, taxonomy, typing methods, and pathogenicity factors. Clinical Microbiology Reviews, 11(4), 589–603. doi:10.1128/CMR.11.4.589
  • Poirel, L., Lienhard, R., Potron, A., Malinverni, R., Siegrist, H. H., & Nordmann, P. (2011). Plasmid-mediated carbapenem-hydrolysing β-lactamase KPC-2 in a Klebsiella pneumoniae isolate from Switzerland. Journal of Antimicrobial Chemotherapy, 66(3), 675–676. doi:10.1093/jac/dkq499
  • Queenan, A. M., & Bush, K. (2007). Carbapenemases: The versatile beta-lactamases. Clinical Microbiology Reviews, 20(3), 440–458. doi:10.1128/CMR.00001-07
  • Rhomberg, P. R., & Jones, R. N. (2009). Summary trends for the meropenem yearly susceptibility test information collection program: A 10-year experience in the United States (1999–2008). Diagnostic Microbiology and Infectious Disease, 65(4), 414–426. doi:10.1016/j.diagmicrobio.2009.08.020
  • Rodriguez-Zulueta, P., Silva-Sanchez, J., Barrios, H., Reyes-Mar, J., Velez-Perez, F., Arroyo-Escalante, S., … Garza-Ramos, U. (2013). First outbreak of KPC-3-producing Klebsiella pneumoniae (ST258) clinical isolates in a Mexican Medical Center. Antimicrobial Agents and Chemotherapy, 57, 4086–4088. doi:10.1128/AAC.02530-12
  • Samra, Z., Ofir, O., Lishtzinsky, Y., Madar-Shapiro, L., & Bishara, J. (2007). Outbreak of carbapenem-resistant Klebsiella pneumoniae producing KPC-3 in a tertiary medical centre in Israel. International Journal of Antimicrobial Agents, 30(6), 525–529. doi:10.1016/j.ijantimicag.2007.07.024
  • Schuttelkopf, A. W., & van Aalten, D. M. (2004). PRODRG: A tool for high-throughput crystallography of protein–ligand complexes. Acta Crystallographica Section D Biological Crystallography, 60, 1355–1363. doi:10.1107/S0907444904011679
  • Souli, M., Galani, I., Antoniadou, A., Papadomichelakis, E., Poulakou, G., Panagea, T., … Giamarellou, H. (2010). An outbreak of infection due to beta-lactamase Klebsiella pneumoniae carbapenemase 2-producing K. pneumoniae in a Greek University Hospital: Molecular characterization, epidemiology, and outcomes. Clinical Infectious Diseases, 50(3), 364–373. doi:10.1086/649865
  • Tang, H. J., Chen, Y. T., Chiang, T., Fung, C. P., Chuang, Y. C., & Kristopher Siu, L. (2014). Identification of the first imported KPC-3 Klebsiella pneumoniae from the USA to Taiwan. International Journal of Antimicrobial Agents, 44(5), 431–435. doi:10.1016/j.ijantimicag.2014.07.009
  • Thillainayagam, M., Anbarasu, A., & Ramaiah, S. (2016). Comparative molecular field analysis and molecular docking studies on novel aryl chalcone derivatives against an important drug target cysteine protease in Plasmodium falciparum. Journal of Theoretical Biology, 403, 110–128. doi:10.1016/j.jtbi.2016.05.019
  • Thillainayagam, M., Malathi, K., Anbarasu, A., Singh, H., Bahadur, R., & Ramaiah, S. (2018). Insights on inhibition of Plasmodium falciparum plasmepsin I by novel epoxyazadiradione derivatives – molecular docking and comparative molecular field analysis. Journal of Biomolecular Structure and Dynamics, 1–15 [published online]. doi:10.1080/07391102.2018.1510342
  • Thillainayagam, M., Malathi, K., & Ramaiah, S. (2017). In-silico molecular docking and simulation studies on novel chalcone and flavone hybrid derivatives with 1, 2, 3-triazole linkage as vital inhibitors of Plasmodium falciparum dihydroorotate dehydrogenase. Journal of Biomolecular Structure and Dynamics, 1–17 [published online]. doi:10.1080/07391102.2017.1404935
  • Turner, P. J. (2005). XMGRACE, Version 5.1.19. Beaverton, OR: Center for Coastal and Land-Margin Research, Oregon Graduate Institute of Science and Technology. doi:10.1186/1471-2105-11-S1-S7.
  • Welch, W., Ruppert, J., & Jain, A. N. (1996). Hammerhead: Fast, fully automated docking of flexible ligands to protein binding sites. Chemistry & Biology, 3, 449–462. doi:10.1016/S1074-5521(96)90093-9
  • Wendt, C., Schutt, S., & Dalpke, A. H. (2010). First outbreak of Klebsiella pneumoniae carbapenemase (KPC)-producing K. pneumoniae in Germany. European Journal of Clinical Microbiology & Infectious Diseases, 29, 563–570. doi:10.1007/s10096-010-0896-0
  • Woodford, N., Tierno, P. M., Young, K., Tysall, L., Palepou, M.-F. I., Ward, E., … Livermore, D. M. (2004). Outbreak of Klebsiella pneumoniae producing a new carbapenem-hydrolyzing class A beta-lactamase, KPC-3, in a New York Medical Center. Antimicrobial Agents and Chemotherapy, 48(12), 4793–4799. doi:10.1128/AAC.48.12.4793-4799.2004
  • Yigit, H., Queenan, A. M., Anderson, G. J., Domenech-Sanchez, A., Biddle, J. W., Steward, C. D., … Tenover, F. C. (2001). Novel carbapenem-hydrolyzing beta-lactamase, KPC-1, from a carbapenem-resistant strain of Klebsiella pneumoniae. Antimicrobial Agents and Chemotherapy, 45(4), 1151–1161. doi:10.1128/AAC.45.4.1151-1161.2001
  • Zavascki, A. P., Zoccoli, C. M., Machado, A. B. M. P., de Oliveira, K. R. P., Superti, S. V., Pilger, D. A., … Barth, A. L. (2010). KPC-2-producing Klebsiella pneumoniae in Brazil: A widespread threat in waiting?. International Journal of Infectious Diseases, 14(6), e539–e540. doi:10.1016/j.ijid.2009.07.004
  • Zhanel, G. G., Simor, A. E., Vercaigne, L., & Mandell, L. (1998). Canadian carbapenem discussion group. Imipenem and meropenem: Comparison of in vitro activity, pharmacokinetics, clinical trials and adverse effects. The Canadian Journal of Infectious Disease, 9, 215–228.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.