166
Views
6
CrossRef citations to date
0
Altmetric
Research Article

Characterizing the structural variability of HIV-2 protease upon the binding of diverse ligands using a structural alphabet approach

, , ORCID Icon, , ORCID Icon & ORCID Icon
Pages 4658-4670 | Received 21 Aug 2018, Accepted 18 Dec 2018, Published online: 01 Feb 2019

References

  • Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., … Bourne, P. E. (2000). The Protein Data Bank. Nucleic Acids Research, 28(1), 235–242.
  • Blondel, V. D., Guillaume, J.-L., Lambiotte, R., & Lefebvre, E. (2008). Fast unfolding of communities in large networks. Journal of Statistical Mechanics: Theory and Experiment, 2008(10), P10008. doi: 10.1088/1742-5468/2008/10/P10008
  • Brower, E. T., Bacha, U. M., Kawasaki, Y., & Freire, E. (2008). Inhibition of HIV-2 protease by HIV-1 protease inhibitors in clinical use. Chemical Biology & Drug Design, 71(4), 298–305.
  • Camproux, A. C., Gautier, R., & Tuffery, P. (2004). A hidden Markov model derivated structural alphabet for proteins. Journal of Molecular Biology, 339, 561–605.
  • Cavaco-Silva, J., Aleixo, M. J., Van Laethem, K., Faria, D., Valadas, E., Gonçalves Mde, F., … Camacho, R. J. Portuguese HIV-2 Resistance Study Group. (2013). Mutations selected in HIV-2-infected patients failing a regimen including atazanavir. Antimicrobial Agents and Chemotherapy, 68(1), 190–192. doi: 10.1093/jac/dks363
  • Csárdi, G., & Nepusz, T. (2006). The igraph software package for complex network research. InterJournal Complex Systems, 1695, 1–9.
  • Chen, J., Liang, Z., Wang, W., Yi, C., Zhang, S., & Zhang, Q. (2014). Revealing origin of decrease in potency of darunavir and amprenavir against HIV-2 relative to HIV-1 protease by molecular dynamics simulations. Scientific Reports, 4, 6872.
  • Desbois, D., Roquebert, B., Peytavin, G., Damond, F., Collin, G., Bénard, A., … Descamps, D. French ANRS HIV-2 Cohort (ANRS CO 05 VIH-2). (2008). In vitro phenotypic susceptibility of human immunodeficiency virus type 2 clinical isolates to protease inhibitors. Antimicrobial Agents and Chemotherapy, 52(4), 1545–1548. doi: 10.1128/AAC.01284-07
  • Drenth, J. (1995). Principles of protein X-ray crystallography. Acta Crystallographica, D51, 248
  • Kar, P., & Knecht, V. J. (2012). Origin of decrease in potency of darunavir and two related antiviral inhibitors against HIV-2 compared to HIV-1 protease. The Journal of Physical Chemistry B, 116(8), 2605–2614. doi: 10.1021/jp211768n
  • Masse, S., Lu, X., Dekhtyar, T., Lu, L., Koev, G., Gao, F., … Molla, A. (2007). In vitro selection and characterization of human immunodeficiency virus type 2 with decreased susceptibility to lopinavir. Antimicrobial Agents and Chemotherapy, 51(9), 3075–3080. doi: 10.1128/AAC.00146-07
  • Menéndez-Arias, L., & Álvarez, M. (2014). Antiretroviral therapy and drug resistance in human immunodeficiency virus type 2 infection. Antiviral Research, 102, 70–86. doi: 10.1016/j.antiviral.2013.12.001
  • Mulichak, A. M., Hui, J. O., Tomasselli, A. G., Heinrikson, R. L., Curry, K. A., Tomich, C. S., … Watenpaugh, K. D. (1993). The crystallographic structure of the protease from human immunodeficiency virus type 2 with two synthetic peptidic transition state analog inhibitors. Journal of Biological Chemistry, 268, 13103–13109.
  • Ntemgwa, M. L., Toni, T. D., Brenner, B. G., Oliveira, M., Asahchop, E. L., Moisi, D., & Wainberg, M. A. (2009). Nucleoside and nucleotide analogs select in culture for different patterns of drug resistance in human immunodeficiency virus types 1 and 2. Antimicrobial Agents and Chemotherapy, 53(2), 708–715. doi: 10.1128/AAC.01109-08
  • Poveda, E., Briz, V., & Soriano, V. (2005). Enfuvirtide, the first fusion inhibitor to treat HIV infection. AIDS Reviews, 7(3), 139–147.
  • Raugi, D. N., Smith, R. A., Ba, S., Toure, M., Traore, F., Sall, F., … Gottlieb, G. S. University of Washington-Dakar HIV-2 Study Group. (2013). Complex patterns of protease inhibitor resistance among antiretroviral treatment-experienced HIV-2 patients from senegal: Implications for second-line therapy. Antimicrobial Agents and Chemotherapy, 57(6), 2751–2760. doi: 10.1128/AAC.00405-13
  • Raugi, D. N., Smith, R. A., Gottlieb, G. S., & The University of Washington-Dakar HIV-2 Study Group. (2016). Four amino acid changes in HIV-2 protease confer class-wide sensitivity to protease inhibitors. Journal of Virology, 90(2), 1062–1069. doi: 10.1128/JVI.01772-15
  • Regad, L., Chéron, J. B., Triki, D., Senac, C., Flatters, D., & Camproux, A. C. (2017). Exploring the potential of a structural alphabet-based tool for mining multiple target conformations and target flexibility insight. PLoS One, 12(8), e0182972. doi: 10.1371/journal.pone.0182972
  • Regad, L., Guyon, F., Maupetit, J., Tuffery, P., & Camproux, A. C. (2008). A hidden Markov model applied to the protein 3D structure analysis. Computational Statistics & Data Analysis, 52, 3198–3207. doi: 10.1016/j.csda.2007.09.010
  • Ren, J., Bird, L. E., Chamberlain, P. P., Stewart-Jones, G. B., Stuart, D. I., & Stammers, D. K. (2002). Structure of HIV-2 reverse transcriptase at 2.35-A resolution and the mechanism of resistance to non-nucleoside inhibitors. Proceedings of the National Academy of Sciences USA, 99(22), 14410–14415. doi: 10.1073/pnas.222366699
  • Rodés, B., Sheldon, J., Toro, C., Jiménez, V., Alvarez, M. A., & Soriano, V. (2006). Susceptibility to protease inhibitors in HIV-2 primary isolates from patients failing antiretroviral therapy. Journal of Antimicrobial Chemotherapy, 57(4), 709–713. doi: 10.1093/jac/dkl034
  • Sadiq, S. K., & de Fabritiis, G. (2010). Explicit solvent dynamics and energetics of HIV-1 protease flap opening and closing. Proteins, 78(14), 2873–2885.
  • Thaisrivongs, S., Watenpaugh, K. D., Howe, W. J., Tomich, P. K., Dolak, L. A., Chong, K.-T., … Turner, S. R. (1995). Structure-based design of novel HIV protease inhibitors: Carboxamide-containing 4-hydroxycoumarins and 4-hydroxy-2-pyrones as potent nonpeptidic inhibitors. Journal of Medicinal Chemistry, 38(18), 3624–3637. doi: 10.1021/jm00018a023
  • Tong, L., Pav, S., Mui, S., Lamarre, D., Yoakim, C., Beaulieu, P., & Anderson, P. C. (1995). Crystal structures of HIV-2 protease in complex with inhibitors containing the hydroxyethylamine dipeptide isostere. Structure, 3(1), 33–40. doi: 10.1016/S0969-2126(01)00133-2
  • Tong, L., Pav, S., Pargellis, C., Dô, F., Anderson, P. C., & Lamarre, D. (1993). Crystal structure of human immunodeficiency virus (HIV) type 2 protease in complex with a reduced amide inhibitor and comparison with HIV-1 protease structures. Proceedings of the National Academy of Sciences of the United States of America, 90(18), 8387–8391. doi: 10.1073/pnas.90.18.8387
  • Triki, D., Cano Contreras, M. E., Flatters, D., Visseaux, B., Descamps, D., Camproux, A. C., & Regad, L. (2018). Analysis of the HIV-2 protease’s adaptation to various ligands: Characterization of backbone asymmetry using a structural alphabet. Scientific Reports, 8, 710.
  • van Westen, G. J., Wegner, J. K., Bender, A., Ijzerman, A. P., & van Vlijmen, H. W. (2010). Mining protein dynamics from sets of crystal structures using "consensus structures". Protein Sciences, 19(4), 742–752. doi: 10.1002/pro.350
  • Venkatakrishnan, B., Palii, M. L., Agbandje-McKenna, M., & McKenna, R. (2012). Mining the protein data bank to differentiate error from structural variation in clustered static structures: An examination of HIV protease. Viruses, 4, 48–62.
  • Visseaux, B., Damond, F., Matheron, S., Descamps, D., & Charpentier, C. (2016). HIV-2 molecular epidemiology. Infection, Genetics and Evolution, 46, 233–240. doi: 10.1016/j.meegid.2016.08.010
  • Wallace, A. C., Laskowski, R. A., & Thornton, J. M. (1995). LIGPLOT: A program to generate schematic diagrams of protein–ligand interactions. Protein Engineering, Design and Selection, 8(2), 127–134. doi: 10.1093/protein/8.2.127
  • Zoete, V., Michielin, O., & Karplus, M. (2002). Relation between sequence and structure of HIV-1 protease inhibitor complexes: A model system for the analysis of protein flexibility. Journal of Molecular Biology, 315(1), 21–52. doi: 10.1006/jmbi.2001.5173

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.