251
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Identification of repurposed protein kinase B binders from FDA-approved drug library: a hybrid–structure activity relationship and systems modeling based approach

&
Pages 660-672 | Received 03 Jan 2019, Accepted 14 Feb 2019, Published online: 11 Mar 2019

References

  • Appelgren, L. E. (1971). The distribution of labelled androstendione in mice. Steroidologia, 2(2), 87–99. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/5130115
  • Bae, Y. H., & Park, K. (2011). Targeted drug delivery to tumors: Myths, reality and possibility. Journal of Controlled Release, 153(3), 198–205. doi:10.1016/j.jconrel.2011.06.001
  • Bagchi, S., Rathee, P., Jayaprakash, V., & Banerjee, S. (2018). Farnesyl transferase inhibitors as potential anticancer agents. Mini-Reviews in Medicinal Chemistry, 18(19), 1611–1623. doi:10.2174/1389557518666180801110342
  • Bai, J., Li, Y., & Zhang, G. (2017). Cell cycle regulation and anticancer drug discovery. Cancer Biology & Medicine, 14(4), 348–362. doi:10.20892/j.issn.2095-3941.2017.0033
  • Ballester, P. J., Mangold, M., Howard, N. I., Robinson, R. L. M., Abell, C., Blumberger, J., & Mitchell, J. B. O. (2012). Hierarchical virtual screening for the discovery of new molecular scaffolds in antibacterial hit identification. Journal of the Royal Society, Interface, 9(77), 3196–3207. doi:10.1098/rsif.2012.0569
  • Barrett, D., Brown, V. I., Grupp, S. A., & Teachey, D. T. (2012). Targeting the PI3K/AKT/mTOR signaling axis in children with hematologic malignancies. Paediatric Drugs, 14(5), 299–316. doi:10.2165/11594740-000000000-00000
  • Bayel Secinti, B., Tatar, G., & Taskin Tok, T. (2018). Determination of potential selective inhibitors for ROCKI and ROCKII isoforms with molecular modeling techniques: Structure based docking, ADMET and molecular dynamics simulation. Journal of Biomolecular Structure & Dynamics. doi:10.1080/07391102.2018.1491420
  • Beg, A., Khan, F. I., Lobb, K. A., Islam, A., Ahmad, F., & Hassan, M. I. (2018). High throughput screening, docking, and molecular dynamics studies to identify potential inhibitors of human calcium/calmodulin-dependent protein kinase IV. Journal of Biomolecular Structure & Dynamics. doi:10.1080/07391102.2018.1479310
  • Brunelleschi, S., Penengo, L., Santoro, M. M., & Gaudino, G. (2002). Receptor tyrosine kinases as target for anti-cancer therapy. Current Pharmaceutical Design, 8(22), 1959–1972. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/12171522 doi:10.2174/1381612023393530
  • Calvo, E., Bolós, V., & Grande, E. (2009). Multiple roles and therapeutic implications of Akt signaling in cancer. OncoTargets and Therapy, 2, 135–150. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/20616901
  • Cao, P., Liu, B., Du, F., Li, D., Wang, Y., Yan, X., … Li, Y. (2019). Scutellarin suppresses proliferation and promotes apoptosis in A549 lung adenocarcinoma cells via AKT/mTOR/4EBP1 and STAT3 pathways. Thoracic Cancer. doi:10.1111/1759-7714.12962
  • Cheng, J. Q., Lindsley, C. W., Cheng, G. Z., Yang, H., & Nicosia, S. V. (2005). The Akt/PKB pathway: molecular target for cancer drug discovery. Oncogene, 24(50), 7482–7492. doi:10.1038/sj.onc.1209088
  • Corsello, S. M., Bittker, J. A., Liu, Z., Gould, J., McCarren, P., Hirschman, J. E., … Golub, T. R. (2017). The drug repurposing hub: A next-generation drug library and information resource. Nature Medicine, 23(4), 405–408. doi:10.1038/nm.4306
  • Cruzalegui, F. (2010). Protein kinases: From targets to anti-cancer drugs. Annales Pharmaceutiques Françaises, 68(4), 254–259. doi:10.1016/j.pharma.2010.03.007
  • Dalle Pezze, P., Nelson, G., Otten, E. G., Korolchuk, V. I., Kirkwood, T. B. L., von Zglinicki, T., & Shanley, D. P. (2014). Dynamic modelling of pathways to cellular senescence reveals strategies for targeted interventions. PLoS Computational Biology, 10(8), e1003728. doi:10.1371/journal.pcbi.1003728
  • Dhanalakshmi, S., Agarwal, C., Singh, R. P., & Agarwal, R. (2005). Silibinin up-regulates DNA-protein kinase-dependent p53 activation to enhance UVB-induced apoptosis in mouse epithelial JB6 cells. Journal of Biological Chemistry, 280(21), 20375–20383. doi:10.1074/jbc.M414640200
  • Djulbegovic, B., Kumar, A., Soares, H. P., Hozo, I., Bepler, G., Clarke, M., & Bennett, C. L. (2008). Treatment success in cancer: New cancer treatment successes identified in phase 3 randomized controlled trials conducted by the National Cancer Institute-sponsored cooperative oncology groups, 1955 to 2006. Archives of Internal Medicine, 168(6), 632–642. doi:10.1001/archinte.168.6.632
  • Gibbs, J. B. (2000). Anticancer drug targets: Growth factors and growth factor signaling. Journal of Clinical Investigation, 105(1), 9–13. doi:10.1172/JCI9084
  • Guo, Z. L., Li, J. Z., Ma, Y. Y., Qian, D., Zhong, J. Y., Jin, M. M., … Liu, C. Z. (2018). Shikonin sensitizes A549 cells to TRAIL-induced apoptosis through the JNK, STAT3 and AKT pathways. BMC Cell Biology, 19(1), 29. https://doi.org/10.1186/s12860-018-0179-7
  • Hartwell, H. J., Petrosky, K. Y., Fox, J. G., Horseman, N. D., & Rogers, A. B. (2014). Prolactin prevents hepatocellular carcinoma by restricting innate immune activation of c-Myc in mice. Proceedings of the National Academy of Sciences of the United States of America, 111(31), 11455–11460. doi:10.1073/pnas.1404267111
  • Hinselmann, G., Rosenbaum, L., Jahn, A., Fechner, N., & Zell, A. (2011). jCompoundMapper: An open source Java library and command-line tool for chemical fingerprints. Journal of Cheminformatics, 3(1), 3 doi:10.1186/1758-2946-3-3
  • Hu, Y., Helm, J. S., Chen, L., Ginsberg, C., Gross, B., Kraybill, B., … Walker, S. (2004). Identification of selective inhibitors for the glycosyltransferase MurG via high-throughput screening. Chemistry & Biology, 11(5), 703–711. doi:10.1016/j.chembiol.2004.02.024
  • Janes, J., Young, M. E., Chen, E., Rogers, N. H., Burgstaller-Muehlbacher, S., Hughes, L. D., … Chatterjee, A. K. (2018). The ReFRAME library as a comprehensive drug repurposing library and its application to the treatment of cryptosporidiosis. Proceedings of the National Academy of Sciences, 115(42), 10750–10755. doi:10.1073/pnas.1810137115
  • Kemmochi, S., Fujimoto, H., Woo, G.-H., Inoue, K., Takahashi, M., Mitsumori, K., … Shibutani, M. (2011). Involvement of PTEN/Akt signaling in capsular invasive carcinomas developed in a rat two-stage thyroid carcinogenesis model after promotion with sulfadimethoxine. Journal of Cancer Research and Clinical Oncology, 137(4), 723–732. doi:10.1007/s00432-010-0931-7
  • Kihara, T., Shimohama, S., Sawada, H., Honda, K., Nakamizo, T., Kanki, R., … Akaike, A. (2002). Protective effect of dopamine D2 agonists in cortical neurons via the phosphatidylinositol 3 kinase cascade. Journal of Neuroscience Research, 70(3), 274–282. doi:10.1002/jnr.10426
  • Kumar, H., Raj, U., Gupta, S., & Varadwaj, P. K. (2016). In-silico identification of inhibitors against mutated BCR-ABL protein of chronic myeloid leukemia: a virtual screening and molecular dynamics simulation study. Journal of Biomolecular Structure & Dynamics, 34(10), 2171–2183. doi:10.1080/07391102.2015.1110046
  • Kumar, H., Raj, U., Srivastava, S., Gupta, S., & Varadwaj, P. K. (2016). Identification of dual natural inhibitors for chronic myeloid leukemia by virtual screening, molecular dynamics simulation and ADMET analysis. Interdisciplinary Sciences: Computational Life Sciences, 8(3), 241–252. doi:10.1007/s12539-015-0118-7
  • Lill, M. A. (2007). Multi-dimensional QSAR in drug discovery. Drug Discovery Today, 12(23-24), 1013–1017. doi:10.1016/j.drudis.2007.08.004
  • LoPiccolo, J., Granville, C. A., Gills, J. J., & Dennis, P. A. (2007). Targeting Akt in cancer therapy. Anti-Cancer Drugs, 18(8), 861–874. doi:10.1097/CAD.0b013e3280cc2c6f
  • Mannello, F., Tonti, G., & Papa, S. (2005). Matrix metalloproteinase inhibitors as anticancer therapeutics. Current Cancer Drug Targets, 5(4), 285–298. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/15975049 doi:10.2174/1568009054064615
  • Manning, B. D., & Toker, A. (2017). AKT/PKB signaling: Navigating the network. Cell, 169(3), 381–405. doi:10.1016/j.cell.2017.04.001
  • Moon, J. Y., Manh Hung, L. V., Unno, T., & Cho, S. K. (2018). Nobiletin enhances chemosensitivity to adriamycin through modulation of the Akt/GSK3β/β−catenin/MYCN/MRP1 signaling pathway in A549 human non-small-cell lung cancer cells. Nutrients, 10(12), 1829. doi:10.3390/nu10121829
  • Nam, N.-H., & Parang, K. (2003). Current targets for anticancer drug discovery. Current Drug Targets, 4(2), 159–179. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/12558068 doi:10.2174/1389450033346966
  • Neidle, S., & Kelland, L. R. (1999). Telomerase as an anti-cancer target: Current status and future prospects. Anti-Cancer Drug Design, 14(4), 341–347. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/10625926
  • Overington, J. P., Al-Lazikani, B., & Hopkins, A. L. (2006). How many drug targets are there? Nature Reviews Drug Discovery, 5(12), 993–996. doi:10.1038/nrd2199
  • Padma, V. V. (2015). An overview of targeted cancer therapy. BioMedicine, 5(4), 19. doi:10.7603/s40681-015-0019-4
  • Pistritto, G., Trisciuoglio, D., Ceci, C., Garufi, A., & D'Orazi, G. (2016). Apoptosis as anticancer mechanism: Function and dysfunction of its modulators and targeted therapeutic strategies. Aging, 8(4), 603–619. doi:10.18632/aging.100934
  • Polgár, T., & Keseru, G. M. (2011). Integration of virtual and high throughput screening in lead discovery settings. Combinatorial Chemistry & High Throughput Screening, 14(10), 889–897. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/21843143
  • Righino, B., Galisson, F., Pirolli, D., Vitale, S., Réty, S., Gouet, P., & De Rosa, M. C. (2017). Structural model of the full-length Ser/Thr protein kinase StkP from S. pneumoniae and its recognition of peptidoglycan fragments. Journal of Biomolecular Structure & Dynamics, 36(14), 1–14. https://doi.org/10.1080/07391102.2017.1395767
  • Romano, G. (2013). The role of the dysfunctional akt-related pathway in cancer: Establishment and maintenance of a malignant cell phenotype, resistance to therapy, and future strategies for drug development. Scientifica, 2013, 1. doi:10.1155/2013/317186
  • Shahbaaz, M., Kanchi, S., Sabela, M., & Bisetty, K. (2018). Structural basis of pesticide detection by enzymatic biosensing: A molecular docking and MD simulation study. Journal of Biomolecular Structure & Dynamics, 36(6), 1402–1416. doi:10.1080/07391102.2017.1323673
  • Suplatov, D., Kopylov, K., Sharapova, Y., & Švedas, V. (2018). Human p38α mitogen-activated protein kinase in the Asp168-Phe169-Gly170-in (DFG-in) state can bind allosteric inhibitor Doramapimod. Journal of Biomolecular Structure & Dynamics. doi:10.1080/07391102.2018.1475260
  • Teng, X., Fan, X.-F., Li, Q., Liu, S., Wu, D.-Y., Wang, S.-Y., … Dong, M. (2019). XPC inhibition rescues cisplatin resistance via the Akt/mTOR signaling pathway in A549/DDP lung adenocarcinoma cells. Oncology Reports. doi:10.3892/or.2019.6959
  • Tian, T., Sun, J., Wang, J., Liu, Y., & Liu, H. (2018). Isoliquiritigenin inhibits cell proliferation and migration through the PI3K/AKT signaling pathway in A549 lung cancer cells. Oncology Letters, 16(5), 6133–6139. https://doi.org/10.3892/ol.2018.9344
  • Vasudevan, K. M., Barbie, D. A., Davies, M. A., Rabinovsky, R., McNear, C. J., Kim, J. J., … Garraway, L. A. (2009). AKT-independent signaling downstream of oncogenic PIK3CA mutations in human cancer. Cancer Cell, 16(1), 21–32. doi:10.1016/j.ccr.2009.04.012
  • Vivanco, I., Chen, Z. C., Tanos, B., Oldrini, B., Hsieh, W.-Y., Yannuzzi, N., … Mellinghoff, I. K. (2014). A kinase-independent function of AKT promotes cancer cell survival. eLife. doi:10.7554/eLife.03751
  • Walker, R. J., Anderson, N. M., Jiang, Y., Bahouth, S., & Steinle, J. J. (2011). Role of β-adrenergic receptor regulation of TNF-α and insulin signaling in retinal Muller cells. Investigative Opthalmology & Visual Science, 52(13), 9527–9533. doi:10.1167/iovs.11-8631
  • Xue, H., Li, J., Xie, H., & Wang, Y. (2018). Review of drug repositioning approaches and resources. International Journal of Biological Sciences, 14(10), 1232–1244. doi:10.7150/ijbs.24612
  • Yung, H. W., Charnock-Jones, D. S., & Burton, G. J. (2011). Regulation of AKT phosphorylation at Ser473 and Thr308 by endoplasmic reticulum stress modulates substrate specificity in a severity dependent manner. PLoS ONE, 6(3), e17894. doi:10.1371/journal.pone.0017894
  • Zanni, R., Gálvez-Llompart, M., Gálvez, J., & García-Domenech, R. (2014). QSAR multi-target in drug discovery: A review. Current Computer Aided-Drug Design, 10(2), 129–136. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/24724898 doi:10.2174/157340991002140708105124
  • Zhu, T., Cao, S., Su, P.-C., Patel, R., Shah, D., Chokshi, H. B., … Hevener, K. E. (2013). Hit identification and optimization in virtual screening: practical recommendations based on a critical literature analysis. Journal of Medicinal Chemistry, 56(17), 6560–6572. doi:10.1021/jm301916b

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.