660
Views
22
CrossRef citations to date
0
Altmetric
Research Articles

Design of novel dopamine D2 and serotonin 5-HT2A receptors dual antagonists toward schizophrenia: An integrated study with QSAR, molecular docking, virtual screening and molecular dynamics simulations

, , &
Pages 860-885 | Received 14 Feb 2019, Accepted 27 Feb 2019, Published online: 27 Mar 2019

References

  • Abayomi, O., Amato, D., Bailey, C., Bitanihirwe, B., Bowen, L., Burshtein, S., … DeLisi, L. E. (2014). The 4th Schizophrenia International Research Society Conference, 5–9 April 2014, Florence, Italy: A summary of topics and trends. Schizophrenia Research, 159(2–3), e1–22. doi:10.1016/j.schres.2014.08.032
  • Adrian, N.-T., & Kleven, M. S. (2011). Comparative pharmacology of antipsychotics possessing combined dopamine D2 and serotonin 5-HT1A receptor properties. Psychopharmacology (Berlin), 216(4), 451–473. doi:10.1007/s00213-011-2247-y
  • Albizu, L., Holloway, T., Gonzalez-Maeso, J., & Sealfon, S. C. (2011). Functional crosstalk and heteromerization of serotonin 5-HT2A and dopamine D2 receptors. Neuropharmacology, 61(4), 770–777. doi:10.1016/j.neuropharm.2011.05.023
  • Anbazhagan, P., Purushottam, M., Kiran Kumar, H. B., Mukherjee, O., Jain, S., & Sowdhamini, R. (2010). Phylogenetic analysis and selection pressures of 5-HT receptors in human and non-human primates: Receptor of an ancient neurotransmitter. Journal of Biomolecular Structure and Dynamics, 27(5), 581–598. doi:10.1080/07391102.2010.10508573
  • Aricioglu, F., Ozkartal, C. S., Unal, G., Dursun, S., Cetin, M., & Müller, N. (2016). Neuroinflammation in Schizophrenia: A critical review and the future. Psychiatry and Clinical Psychopharmacology, 26(4), 429–437. doi:10.5455/bcp.20161123044657
  • Arnt, J., & Skarsfeldt, T. (1998). Do novel antipsychotics have similar pharmacological characteristics? A review of the evidence. Neuropsychopharmacology, 18(2), 63–101. doi:10.1016/s0893-133x(97)00112-7
  • Bruijnzeel, D., Suryadevara, U., & Tandon, R. (2014). Antipsychotic treatment of schizophrenia: An update. Asian Journal of Psychiatry, 11, 3–7. doi:10.1016/j.ajp.2014.08.002
  • Carlsson, J., Yoo, L., Gao, Z. G., Irwin, J. J., Shoichet, B. K., & Jacobson, K. A. (2010). Structure-based discovery of A2A adenosine receptor ligands. Journal of Medicinal Chemistry, 53(9), 3748–3755. doi:10.1021/jm100240h
  • Chai, T., & Draxler, R. R. (2014). Root mean square error (RMSE) or mean absolute error (MAE)? Geoscientific Model Development Discussions, 7(1), 1525–1534. doi:10.5194/gmdd-7-1525-2014
  • Cheng, F., Li, W., Zhou, Y., Shen, J., Wu, Z., Liu, G., … Tang, Y. (2012). admetSAR: A comprehensive source and free tool for assessment of chemical ADMET properties. Journal of Chemical Information and Modeling, 52(11), 3099–3105. doi:10.1021/ci300367a
  • Cho, S., Choi, M. J., Kim, M., Lee, S., Lee, J., Lee, S. J., … Lee, J. Y. (2015). Three-dimensional quantitative structure–activity relationship study on anti-cancer activity of 3,4-dihydroquinazoline derivatives against human lung cancer A549 cells. Journal of Molecular Structure, 1084, 294–301. doi:10.1016/j.molstruc.2014.12.046
  • Chopko, T. C., & Lindsley, C. W. (2018). Classics in chemical neuroscience: Risperidone. ACS Chemical Neuroscience, 9(7), 1520–1529. doi:10.1021/acschemneuro.8b00159
  • Cui, J. J., Tran-Dube, M., Shen, H., Nambu, M., Kung, P. P., Pairish, M., … Edwards, M. P. (2011). Structure based drug design of crizotinib (PF-02341066), a potent and selective dual inhibitor of mesenchymal-epithelial transition factor (c-MET) kinase and anaplastic lymphoma kinase (ALK). Journal of Medicinal Chemistry, 54(18), 6342–6363. doi:10.1021/jm2007613
  • Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: A free web tool to evaluate pharmacokinetics, druglikeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7, 42717. doi:10.1038/srep42717
  • Daina, A., & Zoete, V. (2016). A BOILED-egg to predict gastrointestinal absorption and brain penetration of small molecules. ChemMedChem, 11(11), 1117–1121. doi:10.1002/cmdc.201600182
  • Dimitrelis, K., & Shankar, R. (2016). Pharmacological treatment of schizophrenia—A review of progress. Progress in Neurology and Psychiatry, 20(3), 28–35. doi:10.1002/pnp.430
  • Felsing, D. E., Anastasio, N. C., Miszkiel, J. M., Gilbertson, S. R., Allen, J. A., & Cunningham, K. A. (2018). Biophysical validation of serotonin 5-HT2A and 5-HT2C receptor interaction. PLoS One, 13(8), e0203137.doi:10.1371/journal.pone.0203137
  • Gaebel, W., & Zielasek, J. (2015). Schizophrenia in 2020: Trends in diagnosis and therapy. Psychiatry and Clinical Neurosciences, 69(11), 661–673. doi:10.1111/pcn.12322
  • Gasteiger, J., & Marsili, M. (1980). Iterative partial equalization of orbital electronegativity—A rapid access to atomic charges. Tetrahedron, 36(22), 3219–3228. doi:10.1016/0040-4020(80)80168-2
  • Golbraikh, A., Shen, M., Xiao, Z., Xiao, Y.-D., Lee, K.-H., & Tropsha, A. (2003). Rational selection of training and test sets for the development of validated QSAR models. Journal of Computer-Aided Molecular Design, 17(2/4), 241–253. doi:10.1023/A:1025386326946
  • Golbraikh, A., & Tropsha, A. (2002). Beware of q2!. Journal of Molecular Graphics & Modelling, 20(4), 269–276. doi:10.1016/s1093-3263(01)00123-1
  • Gray, J. A., & Roth, B. L. (2007). The pipeline and future of drug development in schizophrenia. Molecular Psychiatry, 12(10), 904–922. doi:10.1038/sj.mp.4002062
  • Halim, S. A., & Zaheer-Ul-Haq. (2015). Structure based 3D-QSAR studies of Interleukin-2 inhibitors: Comparing the quality and predictivity of 3D-QSAR models obtained from different alignment methods and charge calculations. Chemico-Biological Interactions, 238, 9–24. doi:10.1016/j.cbi.2015.05.018
  • Harvey, P. D. (2014). Disability in schizophrenia: Contributing factors and validated assessments. The Journal of Clinical Psychiatry, 75 (Suppl 1), 15–20. doi:10.4088/JCP.13049su1c.03
  • Horacek, J., Bubenikova-Valesova, V., Kopecek, M., Palenicek, T., Dockery, C., Mohr, P., & Höschl, C. (2006). Mechanism of action of atypical antipsychotic drugs and the neurobiology of schizophrenia. CNS Drugs, 20(5), 389–409. doi:10.2165/00023210-200620050-00004
  • Jibson, M. D., & Tandon, R. (1998). New atypical antipsychotic medications. Journal of Psychiatric Research, 32(3–4), 215–228. doi:10.1016/S0022-3956(98)00023-5
  • Jin, H., & Mosweu, I. (2016). The societal cost of Schizophrenia: A systematic review. PharmacoEconomics, 35(1), 25–42. doi:10.1007/s40273-016-0444-6
  • Kapur, S., Zipursky, R., Remington, G., & Houle, S. (2000). Relationship between dopamine D2 occupancy, clinical response, and side effects: A double-blind PET study of first-episode Schizophrenia. American Journal of Psychiatry, 157(4), 514–520. doi:10.1176/appi.ajp.157.4.514
  • Katritch, V., Jaakola, V. P., Lane, J. R., Lin, J., Ijzerman, A. P., Yeager, M., … Abagyan, R. (2010). Structure-based discovery of novel chemotypes for adenosine A(2A) receptor antagonists. Journal of Medicinal Chemistry, 53(4), 1799–1809. doi:10.1021/jm901647p
  • Keefe, R. S. E., Robert, M., Bilder, P., Sonia, M., Davis, D., Philip, D., Harvey, P., Barton, W., Palmer, P., James, M., Gold, P., … Lieberman, M. (2007). Neurocognitive effects of antipsychotic medications in patients with chronic Schizophrenia in the CATIE Trial. Archives of General Psychiatry, 64(6), 633–647. doi:10.1001/archpsyc.64.6.633
  • Klebe, G., Abraham, U., & Mietzner, T. (1994). Molecular Similarity Indices in a Comparative Analysis (CoMSIA) of drug molecules to correlate and predict their biological activity. Journal of Medicinal Chemistry, 37(24), 4130–4146. doi:10.1021/jm00050a010
  • Kolb, P., Rosenbaum, D. M., Irwin, J. J., Fung, J. J., Kobilka, B. K., & Shoichet, B. K. (2009). Structure-based discovery of NL2-adrenergic receptor ligands. Proceedings of the National Academy of Sciences of the United States of America, 106(16), 6843–6848. doi:10.1073/pnas.0812657106
  • Krause, M., Zhu, Y., Huhn, M., Schneider-Thoma, J., Bighelli, I., Nikolakopoulou, A., & Leucht, S. (2018). Antipsychotic drugs for patients with schizophrenia and predominant or prominent negative symptoms: a systematic review and meta-analysis. European Archives of Psychiatry and Clinical Neuroscience, 268(7), 625–639. doi:10.1007/s00406-018-0869-3
  • Leucht, S., & Davis, J. M. (2017). Schizophrenia, primary negative symptoms, and soft outcomes in psychiatry. Lancet, 389(10074), 1077–1078. doi:10.1016/S0140-6736(17)30181-2
  • Lowis, D. R. (1997). HQSAR: A new, highly predictive QSAR technique. Tripos Technical Notes, 1, 17.
  • Mahesh, G., Jaiswal, P., Dey, S., Sengupta, J., & Mukherjee, S. (2018). Cloning, expression, purification and characterization of oligomeric states of the native 5HT2A G-protein-coupled receptor. Protein & Peptide Letters, 25(4), 390–397. doi:10.2174/0929866525666180207110137
  • Meltzer, H. Y., Li, Z., Kaneda, Y., & Ichikawa, J. (2003). Serotonin receptors: Their key role in drugs to treat schizophrenia. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 27(7), 1159–1172. doi:10.1016/j.pnpbp.2003.09.010
  • Novick, D., Montgomery, W., Treuer, T., Moneta, M. V., & Haro, J. M. (2017). Real-world effectiveness of antipsychotics for the treatment of negative symptoms in patients with Schizophrenia with predominantly negative symptoms. Pharmacopsychiatry, 50(02), 56–63. doi:10.1055/s-0042-112818
  • Ojha, P. K., & Roy, K. (2011). Comparative QSARs for antimalarial endochins: Importance of descriptor-thinning and noise reduction prior to feature selection. Chemometrics and Intelligent Laboratory Systems, 109(2), 146–161. doi:10.1016/j.chemolab.2011.08.007
  • Oprea, T. I., Waller, C. L., & Marshall, G. R. (1994). Three-dimensional quantitative structure-activity relationship of human immunodeficiency virus (I) protease inhibitors. 2. Predictive power using limited exploration of alternate binding modes. Journal of Medicinal Chemistry, 37(14), 2206–2215. doi:10.1021/jm00040a013
  • Parikh, N. B., Robinson, D. M., & Clayton, A. H. (2017). Clinical role of brexpiprazole in depression and schizophrenia. Therapeutics and Clinical Risk Management, 13, 299–306. doi:10.2147/TCRM.S94060
  • Peng, Y., McCorvy, J. D., Harpsoe, K., Lansu, K., Yuan, S., Popov, P., … Liu, Z. J. (2018). 5-HT2C receptor structures reveal the structural basis of GPCR polypharmacology. Cell, 172(4), 719–730. doi:10.1016/j.cell.2018.01.001
  • Richmond, N. J., Abrams, C. A., Wolohan, P. R., Abrahamian, E., Willett, P., & Clark, R. D. (2006). GALAHAD: 1. pharmacophore identification by hypermolecular alignment of ligands in 3D. Journal of Computer-Aided Molecular Design, 20(9), 567–587. doi:10.1007/s10822-006-9082-y
  • Rodrigues-Amorim, D., Rivera-Baltanas, T., Lopez, M., Spuch, C., Olivares, J. M., & Agis-Balboa, R. C. (2017). Schizophrenia: A review of potential biomarkers. Journal of Psychiatric Research, 93, 37–49. doi:10.1016/j.jpsychires.2017.05.009
  • Roy, P. P., Leonard, J. T., & Roy, K. (2008). Exploring the impact of size of training sets for the development of predictive QSAR models. Chemometrics and Intelligent Laboratory Systems, 90(1), 31–42. doi:10.1016/j.chemolab.2007.07.004
  • Roy, P. P., Paul, S., Mitra, I., Roy, K. (2009). On two novel parameters for validation of predictive QSAR models. Molecules (Basel, Switzerland), 14(5), 1660–1701. Molecules 15, 604–605. doi:10.3390/molecules14051660
  • Schmidt, C. J., Sorensen, S. M., Kehne, J. H., Carr, A. A., & Palfreyman, M. G. (1995). The role of 5-HT2A receptors in antipsychotic activity. Life Sciences, 56(25), 2209–2222. doi:10.1016/0024-3205(95)00210-w
  • Schotte, A., Janssen, P. F. M., Gommeren, W., Luyten, W. H. M. L., Van Gompel, P., Lesage, A. S., De Loore, K., & Leysen, J. E. (1996). Risperidone compared with new and reference antipsychotic drugs: In vitro and in vivo receptor binding. Psychopharmacology, 124(1-2), 57–73. doi:10.1007/BF02245606
  • Szlachta, M., Kuśmider, M., Pabian, P., Solich, J., Kolasa, M., Żurawek, D., … Faron-Górecka, A. (2018). Repeated clozapine increases the level of serotonin 5-HT1AR heterodimerization with 5-HT2A or dopamine D2 receptors in the mouse cortex. Frontiers in Molecular Neuroscience, 11, 40.doi:10.3389/fnmol.2018.00040
  • Tandon, R., Nasrallah, H. A., & Keshavan, M. S. (2009). Schizophrenia, "just the facts" 4. Clinical features and conceptualization. Schizophrenia Research, 110(1–3), 1–23. doi:10.1016/j.schres.2009.03.005
  • Tarsy, D., Baldessarini, R. J., & Tarazi, F. I. (2002). Effects of newer antipsychotics on extrapyramidal function. CNS Drugs, 16(1), 23–45. doi:10.2165/00023210-200216010-00003
  • Tropsha, A. (2010). Best practices for QSAR model development, validation, and exploitation. Molecular Informatics, 29(6–7), 476–488. doi:10.1002/minf.201000061
  • Tsai, J., Lee, J. T., Wang, W., Zhang, J., Cho, H., Mamo, S., … Bollag, G. (2008). Discovery of a selective inhibitor of oncogenic B-Raf kinase with potent antimelanoma activity. Proceedings of the National Academy of Sciences, 105(8), 3041–3046. doi:10.1073/pnas.0711741105
  • Valton, V., Romaniuk, L., Steele, D. J., Lawrie, S., & Series, P. (2017). Comprehensive review: Computational modelling of schizophrenia. Neuroscience & Biobehavioral Reviews, 83, 631–646. doi:10.1016/j.neubiorev.2017.08.022
  • Veerman, S. R. T., Schulte, P. F. J., & de Haan, L. (2017). Treatment for negative symptoms in Schizophrenia: A comprehensive review. Drugs, 77(13), 1423–1459. doi:10.1007/s40265-017-0789-y
  • Wang, S., Che, T., Levit, A., Shoichet, B. K., Wacker, D., & Roth, B. L. (2018). Structure of the D2 dopamine receptor bound to the atypical antipsychotic drug risperidone. Nature, 555(7695), 269–273. doi:10.1038/nature25758
  • Wirth, M., Zoete, V., Michielin, O., & Sauer, W. H. B. (2013). SwissBioisostere: A database of molecular replacements for ligand design. Nucleic Acids Research, 41(D1), D1137–D1143. doi:10.1093/nar/gks1059
  • Wold, S., Sjostrom, M., & Eriksson, L. (2002). PLS-regression: A basic tool of chemometrics. Chemometrics and Intelligent Laboratory Systems, 58(2), 109–130. doi:10.1016/S0169-7439(01)00155-1
  • Xiamuxi, H., Wang, Z., Li, J., Wang, Y., Wu, C., Yang, F., … Shen, J. (2017). Synthesis and biological investigation of tetrahydropyridopyrimidinone derivatives as potential multireceptor atypical antipsychotics. Bioorganic & Medicinal Chemistry, 25(17), 4904–4916. doi:10.1016/j.bmc.2017.07.040
  • Zhang, S., Golbraikh, A., Oloff, S., Kohn, H., & Tropsha, A. (2006). A novel automated lazy learning QSAR (ALL-QSAR) approach: method development, applications, and virtual screening of chemical databases using validated ALL-QSAR models. Journal of Chemical Information and Modeling, 46(5), 1984–1995. doi:10.1021/ci060132x

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.