350
Views
1
CrossRef citations to date
0
Altmetric
Review Article

Disorder in milk proteins: adipophilin and TIP47, important constituents of the milk fat globule membrane

ORCID Icon, , , , & ORCID Icon
Pages 1214-1229 | Received 25 Feb 2019, Accepted 04 Mar 2019, Published online: 21 Mar 2019

References

  • Albar, A. H., Almehdar, H. A., Uversky, V. N., & Redwan, E. M. (2014). Structural heterogeneity and multifunctionality of lactoferrin. Current Protein & Peptide Science, 15(8), 778–797. doi: 10.2174/1389203715666140919124530
  • Almehdar, H. A., El-Fakharany, E. M., Uversky, V. N., & Redwan, E. M. (2015). Disorder in milk proteins: Structure, functional disorder, and biocidal potentials of lactoperoxidase. Current Protein & Peptide Science, 16(4), 352–365. doi: 10.2174/1389203716666150316114956
  • Andreas, N. J., Kampmann, B., & Mehring Le-Doare, K. (2015). Human breast milk: A review on its composition and bioactivity. Early Human Development, 91(11), 629–635. doi: 10.1016/j.earlhumdev.2015.08.013
  • Bampi, C., Grenet, A. S., Caignard, G., Vidalain, P. O., & Roux, L. (2013). The cellular protein TIP47 restricts Respirovirus multiplication leading to decreased virus particle production. Virus Research, 173(2), 354–363. doi: 10.1016/j.virusres.2013.01.006
  • Bateman, A., Coin, L., Durbin, R., Finn, R. D., Hollich, V., Griffiths-Jones, S., … Eddy, S. R. (2004). The Pfam protein families database. Nucleic Acids Research, 32(Database issue), D138–D141. doi: 10.1093/nar/gkh121
  • Bauby, H., Lopez-Verges, S., Hoeffel, G., Delcroix-Genete, D., Janvier, K., Mammano, F., … Berlioz-Torrent, C. (2010). TIP47 is required for the production of infectious HIV-1 particles from primary macrophages. Traffic, 11(4), 455–467. doi: 10.1111/j.1600-0854.2010.01036.x
  • Bickel, P. E., Tansey, J. T., & Welte, M. A. (2009). PAT proteins, an ancient family of lipid droplet proteins that regulate cellular lipid stores. Biochimica et Biophysica Acta, 1791(6), 419–440. doi: 10.1016/j.bbalip.2009.04.002
  • Blaner, W. S., O'Byrne, S. M., Wongsiriroj, N., Kluwe, J., D'Ambrosio, D. M., Jiang, H., … Libien, J. (2009). Hepatic stellate cell lipid droplets: A specialized lipid droplet for retinoid storage. Biochimica et Biophysica Acta, 1791(6), 467–473. doi: 10.1016/j.bbalip.2008.11.001
  • Bohn, H., Kraus, W., & Winckler, W. (1983). Purification and characterization of two new soluble placental tissue proteins (PP13 and PP17). Oncodevelopmental Biology and Medicine : The Journal of the International Society for Oncodevelopmental Biology and Medicine, 4(5), 343–350.
  • Brasaemle, D. L. (2007). Thematic review series: Adipocyte biology. The perilipin family of structural lipid droplet proteins: Stabilization of lipid droplets and control of lipolysis. Journal of Lipid Research, 48(12), 2547–2559. doi: 10.1194/jlr.R700014-JLR200
  • Brasaemle, D. L., Barber, T., Wolins, N. E., Serrero, G., Blanchette-Mackie, E. J., & Londos, C. (1997). Adipose differentiation-related protein is an ubiquitously expressed lipid storage droplet-associated protein. The Journal of Lipid Research, 38, 2249–2263.
  • Bussell, R., Jr., & Eliezer, D. (2003). A structural and functional role for 11-mer repeats in alpha-synuclein and other exchangeable lipid binding proteins. Journal of Molecular Biology, 329(4), 763–778. doi: 10.1016/S0022-2836(03)00520-5
  • Carroll, K. S., Hanna, J., Simon, I., Krise, J., Barbero, P., & Pfeffer, S. R. (2001). Role of Rab9 GTPase in facilitating receptor recruitment by TIP47. Science, 292(5520), 1373–1376. doi: 10.1126/science.1056791
  • Carvalho, F. A., Carneiro, F. A., Martins, I. C., Assuncao-Miranda, I., Faustino, A. F., Pereira, R. M., … Santos, N. C. (2012). Dengue virus capsid protein binding to hepatic lipid droplets (LD) is potassium ion dependent and is mediated by LD surface proteins. Journal of Virology, 86(4), 2096–2108. doi: 10.1128/JVI.06796-11
  • Castellanos, E. R., Ciferri, C., Phung, W., Sandoval, W., & Matsumoto, M. L. (2016). Expression, purification, and characterization of recombinant human and murine milk fat globule-epidermal growth factor-factor 8. Protein Expression and Purification, 124, 10–22. doi: 10.1016/j.pep.2016.04.006
  • Cebo, C., & Martin, P. (2012). Inter-species comparison of milk fat globule membrane proteins highlights the molecular diversity of lactadherin. International Dairy Journal, 24(2), 70–77. doi: 10.1016/j.idairyj.2011.09.017
  • Chang, B. H., Li, L., Paul, A., Taniguchi, S., Nannegari, V., Heird, W. C., & Chan, L. (2006). Protection against fatty liver but normal adipogenesis in mice lacking adipose differentiation-related protein. Molecular and Cellular Biology, 26(3), 1063–1076. doi: 10.1128/MCB.26.3.1063-1076.2006
  • Chen, F. L., Yang, Z. H., Wang, X. C., Liu, Y., Yang, Y. H., Li, L. X., … Hu, R. M. (2010). Adipophilin affects the expression of TNF-alpha, MCP-1, and IL-6 in THP-1 macrophages. Molecular and Cellular Biochemistry, 337(1-2), 193–199. doi: 10.1007/s11010-009-0299-7
  • Chong, B. M., Reigan, P., Mayle-Combs, K. D., Orlicky, D. J., & McManaman, J. L. (2011a). Determinants of adipophilin function in milk lipid formation and secretion. Trends in Endocrinology and Metabolism, 22(6), 211–217. doi: 10.1016/j.tem.2011.04.003
  • Chong, B. M., Russell, T. D., Schaack, J., Orlicky, D. J., Reigan, P., Ladinsky, M., & McManaman, J. L. (2011b). The adipophilin C terminus is a self-folding membrane-binding domain that is important for milk lipid secretion. Journal of Biological Chemistry, 286(26), 23254–23265. doi: 10.1074/jbc.M110.217091
  • Conte, M., Franceschi, C., Sandri, M., & Salvioli, S. (2016). Perilipin 2 and age-related metabolic diseases: A new perspective. Trends in Endocrinology and Metabolism, 27(12), 893–903. doi: 10.1016/j.tem.2016.09.001
  • Covington, J. D., Noland, R. C., Hebert, R. C., Masinter, B. S., Smith, S. R., Rustan, A. C., … Bajpeyi, S. (2015). Perilipin 3 differentially regulates skeletal muscle lipid oxidation in active, sedentary, and type 2 diabetic males. The Journal of Clinical Endocrinology and Metabolism, 100(10), 3683–3692. doi: 10.1210/JC.2014-4125
  • Darling, A. L., & Uversky, V. N. (2018). Intrinsic disorder and posttranslational modifications: The darker side of the biological dark matter. Frontiers in Genetics, 9, 158. doi: 10.3389/fgene.2018.00158
  • Daughdrill, G. W., Pielak, G. J., Uversky, V. N., Cortese, M. S., & Dunker, A. K. (2005). Natively disordered proteins. In J. Buchner, & T. Kiefhaber (Eds.), Handbook of Protein Folding (pp. 271–353). Weinheim, Germany: Wiley-VCH, Verlag GmbH & Co. KGaA. doi:10.1002/9783527619498.ch41.
  • Dewettinck, K., Rombaut, R., Thienpont, N., Le, T. T., Messens, K., & van Camp, J. (2008). Nutritional and technological aspects of milk fat globule membrane material. International Dairy Journal, 18 (5), 436–457. doi: 10.1016/j.idairyj.2007.10.014
  • Diaz, E., & Pfeffer, S. R. (1998). TIP47: A cargo selection device for mannose 6-phosphate receptor trafficking. Cell, 93, 433–443. doi: 10.1016/S0092-8674(00)81171-X
  • Dosztanyi, Z., Chen, J., Dunker, A. K., Simon, I., & Tompa, P. (2006). Disorder and sequence repeats in hub proteins and their implications for network evolution. Journal of Proteome Research, 5, 2985–2995. doi: 10.1021/pr060171o
  • Dosztanyi, Z., Csizmok, V., Tompa, P., & Simon, I. (2005a). IUPred: Web server for the prediction of intrinsically unstructured regions of proteins based on estimated energy content. Bioinformatics, 21(16), 3433–3434. doi: 10.1093/bioinformatics/bti541
  • Dosztanyi, Z., Csizmok, V., Tompa, P., & Simon, I. (2005b). The pairwise energy content estimated from amino acid composition discriminates between folded and intrinsically unstructured proteins. Journal of Molecular Biology, 347, 827–839. doi: 10.1016/j.jmb.2005.01.071
  • Dosztanyi, Z., Meszaros, B., & Simon, I. (2009). ANCHOR: Web server for predicting protein binding regions in disordered proteins. Bioinformatics, 25(20), 2745–2746. doi: 10.1093/bioinformatics/btp518
  • Dunker, A. K., Babu, M., Barbar, E., Blackledge, M., Bondos, S. E., Dosztányi, Z., … Uversky, V. N. (2013). What’s in a name? Why these proteins are intrinsically disordered. Intrinsically Disordered Proteins, 1(1), e24157. doi: 10.4161/idp.24157
  • Dunker, A. K., Brown, C. J., Lawson, J. D., Iakoucheva, L. M., & Obradovic, Z. (2002a). Intrinsic disorder and protein function. Biochemistry, 41(21), 6573–6582.+. doi: 10.1021/bi012159
  • Dunker, A. K., Brown, C. J., & Obradovic, Z. (2002b). Identification and functions of usefully disordered proteins. Advances in Protein Chemistry, 62, 25–49. doi: 10.1016/s0065-3233(02)62004-2.
  • Dunker, A. K., Cortese, M. S., Romero, P., Iakoucheva, L. M., & Uversky, V. N. (2005). Flexible nets. The roles of intrinsic disorder in protein interaction networks. The FEBS Journal, 272(20), 5129–5148. doi: 10.1111/j.1742-4658.2005.04948.x
  • Dunker, A. K., Garner, E., Guilliot, S., Romero, P., Albrecht, K., Hart, J., … Villafranca, J. E. (1998). Protein disorder and the evolution of molecular recognition: Theory, predictions and observations. Pacific Symposium on Biocomputing, 473–484.
  • Dunker, A. K., Lawson, J. D., Brown, C. J., Williams, R. M., Romero, P., Oh, J. S., … Obradovic, Z. (2001). Intrinsically disordered protein. Journal of Molecular Graphics and Modelling, 19(1), 26–59. doi: 10.1016/S1093-3263(00)00138-8
  • Dunker, A. K., Obradovic, Z., Romero, P., Garner, E. C., & Brown, C. J. (2000). Intrinsic protein disorder in complete genomes. Genome Informatics Series Workshop on Genome Informatics, 11, 161–171.
  • Dunker, A. K., Oldfield, C. J., Meng, J., Romero, P., Yang, J. Y., Chen, J. W., … Uversky, V. N. (2008a). The unfoldomics decade: An update on intrinsically disordered proteins. BMC Genomics, 9 (Suppl 2), S1. doi: 10.1186/1471-2164-9-S2-S1
  • Dunker, A. K., Silman, I., Uversky, V. N., & Sussman, J. L. (2008b). Function and structure of inherently disordered proteins. Current Opinion in Structural Biology, 18(6), 756–764. doi: 10.1016/j.sbi.2008.10.002
  • Dyson, H. J. (2011). Expanding the proteome: Disordered and alternatively folded proteins. Quarterly Reviews of Biophysics, 44(04), 467–518. doi: 10.1017/S0033583511000060
  • Dyson, H. J., & Wright, P. E. (2005). Intrinsically unstructured proteins and their functions. Nature Reviews Molecular Cell Biology, 6(3), 197–208. doi: 10.1038/nrm1589
  • Ekman, D., Light, S., Bjorklund, A. K., & Elofsson, A. (2006). What properties characterize the hub proteins of the protein-protein interaction network of Saccharomyces cerevisiae? Genome Biology, 7(6), R45. [Mismatch] doi: 10.1186/gb-2006-7-6-r45
  • Farese, R. V., Jr., & Walther, T. C. (2009). Lipid droplets finally get a little R-E-S-P-E-C-T. Cell, 139(5), 855–860. doi: 10.1016/j.cell.2009.11.005
  • Faustino, A. F., Martins, I. C., Carvalho, F. A., Castanho, M. A., Maurer-Stroh, S., & Santos, N. C. (2015). Understanding dengue virus capsid protein interaction with key biological targets. Science Report, 5, 10592. doi: 10.1038/srep10592
  • Finn, R. D., Mistry, J., Schuster-Bockler, B., Griffiths-Jones, S., Hollich, V., Lassmann, T., … Bateman, A. (2006). Pfam: Clans, web tools and services. Nucleic Acids Research, 34(90001), D247–D251. doi: 10.1093/nar/gkj149
  • Finn, R. D., Tate, J., Mistry, J., Coggill, P. C., Sammut, S. J., Hotz, H. R., … Bateman, A. (2008). The Pfam protein families database. Nucleic Acids Research, 36(Database), D281–D288. doi: 10.1093/nar/gkm960
  • Fortunato, D., Giuffrida, M. G., Cavaletto, M., Garoffo, L. P., Dellavalle, G., Napolitano, L., … Conti, A. (2003). Structural proteome of human colostral fat globule membrane proteins. Proteomics, 3(6), 897–905. doi: 10.1002/pmic.200300367
  • Fujimoto, T., & Parton, R. G. (2011). Not just fat: The structure and function of the lipid droplet. Cold Spring Harbor Perspectives in Biology, 3, pii: a004838. doi: 10.1101/cshperspect.a004838
  • Gao, J., & Serrero, G. (1999). Adipose differentiation related protein (ADRP) expressed in transfected COS-7 cells selectively stimulates long chain fatty acid uptake. Journal of Biological Chemistry, 274(24), 16825–16830. doi: 10.1074/jbc.274.24.16825
  • Hanna, J., Carroll, K., & Pfeffer, S. R. (2002). Identification of residues in TIP47 essential for Rab9 binding. Proceedings of the National Academy of Sciences United States of America, 99(11), 7450–7454. doi: 10.1073/pnas.112198799
  • Haynes, C., Oldfield, C. J., Ji, F., Klitgord, N., Cusick, M. E., Radivojac, P., … Iakoucheva, L. M. (2006). Intrinsic disorder is a common feature of hub proteins from four eukaryotic interactomes. PLoS Computational Biology, 2(8), e100. doi: 10.1371/journal.pcbi.0020100.eor
  • Heid, H. W., & Keenan, T. W. (2005). Intracellular origin and secretion of milk fat globules. European Journal of Cell Biology, 84(2-3), 245–258. doi: 10.1016/j.ejcb.2004.12.002
  • Heid, H. W., Moll, R., Schwetlick, I., Rackwitz, H. R., & Keenan, T. W. (1998). Adipophilin is a specific marker of lipid accumulation in diverse cell types and diseases. Cell Tissue Research, 294(2), 309–321. doi: 10.1007/s004410051181
  • Heid, H. W., Schnolzer, M., & Keenan, T. W. (1996). Adipocyte differentiation-related protein is secreted into milk as a constituent of milk lipid globule membrane. Biochemical Journal, 320 (3), 1025–1030. doi: 10.1042/bj3201025
  • Hickenbottom, S. J., Kimmel, A. R., Londos, C., & Hurley, J. H. (2004). Structure of a lipid droplet protein; the PAT family member TIP47. Structure, 12(7), 1199–1207. doi: 10.1016/j.str.2004.04.021
  • Hocsak, E., Racz, B., Szabo, A., Mester, L., Rapolti, E., Pozsgai, E., … Szigeti, A. (2010a). TIP47 protects mitochondrial membrane integrity and inhibits oxidative-stress-induced cell death. FEBS Letters, 584(13), 2953–2960. doi: 10.1016/j.febslet.2010.05.027
  • Hocsak, E., Racz, B., Szabo, A., Pozsgai, E., Szigeti, A., Szigeti, E., … Bellyei, S. (2010b). TIP47 confers resistance to taxol-induced cell death by preventing the nuclear translocation of AIF and Endonuclease G. European Journal of Cell Biology, 89(11), 853–861. doi: 10.1016/j.ejcb.2010.06.010
  • Hooper, C., Puttamadappa, S. S., Loring, Z., Shekhtman, A., & Bakowska, J. C. (2010). Spartin activates atrophin-1-interacting protein 4 (AIP4) E3 ubiquitin ligase and promotes ubiquitination of adipophilin on lipid droplets. BMC Biology, 8(1), 72. doi: 10.1186/1741-7007-8-72
  • Hsieh, K., Lee, Y. K., Londos, C., Raaka, B. M., Dalen, K. T., & Kimmel, A. R. (2012). Perilipin family members preferentially sequester to either triacylglycerol-specific or cholesteryl-ester-specific intracellular lipid storage droplets. Journal of Cell Science, 125(17), 4067–4076. doi: 10.1242/jcs.104943
  • Hsu, W. L., Oldfield, C., Meng, J., Huang, F., Xue, B., Uversky, V. N., … Dunker, A. K. (2012). Intrinsic protein disorder and protein-protein interactions. Pacific Symposium on Biocomputing, 116–127. doi: 10.1142/9789814366496_0012
  • Hsu, W. L., Oldfield, C. J., Xue, B., Meng, J., Huang, F., Romero, P., … Dunker, A. K. (2013). Exploring the binding diversity of intrinsically disordered proteins involved in one-to-many binding. Protein Science, 22(3), 258–273. doi: 10.1002/pro.2207
  • Huang, F., Oldfield, C., Meng, J., Hsu, W. L., Xue, B., Uversky, V. N., … Dunker, A. K. (2012). Subclassifying disordered proteins by the CH-CDF plot method. Pacific Symposium on Biocomputing, 128–139. doi: 10.1142/9789814366496_0013
  • Hynson, R. M., Jeffries, C. M., Trewhella, J., & Cocklin, S. (2012). Solution structure studies of monomeric human TIP47/perilipin-3 reveal a highly extended conformation. Proteins, 80, 2046–2055. doi: 10.1002/prot.24095
  • Iakoucheva, L. M., Radivojac, P., Brown, C. J., O'Connor, T. R., Sikes, J. G., Obradovic, Z., & Dunker, A. K. (2004). The importance of intrinsic disorder for protein phosphorylation. Nucleic Acids Research, 32(3), 1037–1049. doi: 10.1093/nar/gkh253
  • Imamura, M., Inoguchi, T., Ikuyama, S., Taniguchi, S., Kobayashi, K., Nakashima, N., & Nawata, H. (2002). ADRP stimulates lipid accumulation and lipid droplet formation in murine fibroblasts. American Journal of Physiolgy-Endocrinology and Metabolism, 283(4), E775–E783. doi: 10.1152/ajpendo.00040.2002
  • Jakob, U., Kriwacki, R., & Uversky, V. N. (2014). Conditionally and transiently disordered proteins: Awakening cryptic disorder to regulate protein function. Chemical Reviews, 114(13), 6779–6805. doi: 10.1021/cr400459c
  • Jiang, H. P., & Serrero, G. (1992). Isolation and characterization of a full-length cDNA coding for an adipose differentiation-related protein. Proceedings of the National Academy of Sciences United States of America, 89(17), 7856–7860. doi: 10.1073/pnas.89.17.7856
  • Kaushik, S., & Cuervo, A. M. (2016). AMPK-dependent phosphorylation of lipid droplet protein PLIN2 triggers its degradation by CMA. Autophagy, 12(2), 432–438. doi: 10.1080/15548627.2015.1124226
  • Kimmel, A. R., & Sztalryd, C. (2016). The perilipins: Major cytosolic lipid droplet-associated proteins and their roles in cellular lipid storage, mobilization, and systemic homeostasis. Annual Review of Nutrition, 36(1), 471–509. doi: 10.1146/annurev-nutr-071813-105410
  • Klein, L. D., Huang, J., Quinn, E. A., Martin, M. A., Breakey, A. A., Gurven, M., … Hinde, K. (2018). Variation among populations in the immune protein composition of mother's milk reflects subsistence pattern. Evolution, Medicine, and Public Health, 2018, 230–245. doi: 10.1093/emph/eoy031
  • Krise, J. P., Sincock, P. M., Orsel, J. G., & Pfeffer, S. R. (2000). Quantitative analysis of TIP47-receptor cytoplasmic domain interactions: Implications for endosome-to-trans Golgi network trafficking. Journal of Biological Chemistry, 275(33), 25188–25193. doi: 10.1074/jbc.M001138200
  • Li, B.-Z., Zhang, H.-Y., Pan, H.-F., & Ye, D.-Q. (2013). Identification of MFG-E8 as a novel therapeutic target for diseases. Expert Opinion on Therapeutic Targets, 17(11), 1275–1285. doi: 10.1517/14728222.2013.829455
  • Listenberger, L. L., Ostermeyer-Fay, A. G., Goldberg, E. B., Brown, W. J., & Brown, D. A. (2007). Adipocyte differentiation-related protein reduces the lipid droplet association of adipose triglyceride lipase and slows triacylglycerol turnover. Journal of Lipid Research, 48(12), 2751–2761. doi: 10.1194/jlr.M700359-JLR200
  • Lopez-Verges, S., Camus, G., Blot, G., Beauvoir, R., Benarous, R., & Berlioz-Torrent, C. (2006). Tail-interacting protein TIP47 is a connector between Gag and Env and is required for Env incorporation into HIV-1 virions. Proceedings of the National Academy of Sciences United States of America, 103(40), 14947–14952. doi: 10.1073/pnas.0602941103
  • Lopez, C., & Menard, O. (2011). Human milk fat globules: Polar lipid composition and in situ structural investigations revealing the heterogeneous distribution of proteins and the lateral segregation of sphingomyelin in the biological membrane. Colloids Surface B Biointerfaces, 83(1), 29–41. doi: 10.1016/j.colsurfb.2010.10.039
  • Lu, J., Argov-Argaman, N., Anggrek, J., Boeren, S., van Hooijdonk, T., Vervoort, J., & Hettinga, K. A. (2016). The protein and lipid composition of the membrane of milk fat globules depends on their size. Journal of Dairy Science, 99(6), 4726–4738. doi: 10.3168/jds.2015-10375
  • MacPherson, R. E., Herbst, E. A., Reynolds, E. J., Vandenboom, R., Roy, B. D., & Peters, S. J. (2012). Subcellular localization of skeletal muscle lipid droplets and PLIN family proteins OXPAT and ADRP at rest and following contraction in rat soleus muscle. American Journal of Physiology-Regulatory, Integrative and Comparitive Physiology, 302(1), R29–R36. doi: 10.1152/ajpregu.00163.2011
  • Maekawa, I., Inaba, N., Ota, Y., Takamizawa, H., & Bohn, H. (1993). The development of an enzyme immunoassay for placental tissue protein 17 (PP17) and its clinical significance. Asia-Oceania Journal of Obstetrics and Gynaecology, 19(3), 319–327. doi: 10.1111/j.1447-0756.1993.tb00391.x
  • Magne, J., Aminoff, A., Perman Sundelin, J., Mannila, M. N., Gustafsson, P., Hultenby, K., … Ehrenborg, E. (2013). The minor allele of the missense polymorphism Ser251Pro in perilipin 2 (PLIN2) disrupts an alpha-helix, affects lipolysis, and is associated with reduced plasma triglyceride concentration in humans. The FASEB Journal, 27, 3090–3099. doi: 10.1096/fj.13-228759
  • Mather, I. H., & Keenan, T. W. (1998). Origin and secretion of milk lipids. Journal of Mammary Gland Biology and Neoplasia, 3(3), 259–273. doi:
  • McManaman, J. L. (2009). Formation of milk lipids: A molecular perspective. Clinical Lipidology, 4(3), 391–401. doi: 10.2217/clp.09.15
  • McManaman, J. L., Bales, E. S., Orlicky, D. J., Jackman, M., MacLean, P. S., Cain, S., … Greenberg, A. S. (2013). Perilipin-2-null mice are protected against diet-induced obesity, adipose inflammation, and fatty liver disease. Journal of Lipid Research, 54(5), 1346–1359. doi: 10.1194/jlr.M035063
  • McManaman, J. L., Russell, T. D., Schaack, J., Orlicky, D. J., & Robenek, H. (2007). Molecular determinants of milk lipid secretion. Journal of Mammary Gland Biology and Neoplasia, 12(4), 259–268. doi: 10.1007/s10911-007-9053-5
  • McManaman, J. L., Zabaronick, W., Schaack, J., & Orlicky, D. J. (2003). Lipid droplet targeting domains of adipophilin. Journal of Lipid Research, 44(4), 668–673. doi: 10.1194/jlr.C200021-JLR200
  • Meszaros, B., Simon, I., & Dosztanyi, Z. (2009). Prediction of protein binding regions in disordered proteins. PLoS Computational Biology, 5, e1000376. doi: 10.1371/journal.pcbi.1000376
  • Michalski, M. C., Cariou, R., Michel, F., & Garnier, C. (2002). Native vs. damaged milk fat globules: Membrane properties affect the viscoelasticity of milk gels. Journal of Dairy Science, 85(10), 2451–2461. doi: 10.3168/jds.S0022-0302(02)74327-0
  • Minnaard, R., Schrauwen, P., Schaart, G., Jorgensen, J. A., Lenaers, E., Mensink, M., & Hesselink, M. K. (2009). Adipocyte differentiation-related protein and OXPAT in rat and human skeletal muscle: Involvement in lipid accumulation and type 2 diabetes mellitus. The Journal of Clinical Endocrinology and Metabolism, 94(10), 4077–4085. doi: 10.1210/jc.2009-0352
  • Miura, S., Gan, J. W., Brzostowski, J., Parisi, M. J., Schultz, C. J., Londos, C., … Kimmel, A. R. (2002). Functional conservation for lipid storage droplet association among perilipin, ADRP, and TIP47 (PAT)-related proteins in mammals, drosophila, and dictyostelium. Journal of Biological Chemistry, 277(35), 32253–32257. doi: 10.1074/jbc.M204410200
  • Mohan, A., Sullivan, W. J., Jr., Radivojac, P., Dunker, A. K., & Uversky, V. N. (2008). Intrinsic disorder in pathogenic and non-pathogenic microbes: Discovering and analyzing the unfoldomes of early-branching eukaryotes. Molecular Biosystems, 4(4), 328–340. doi: 10.1039/b719168e
  • Niklas, K. J., Bondos, S. E., Dunker, A. K., & Newman, S. A. (2015). Rethinking gene regulatory networks in light of alternative splicing, intrinsically disordered protein domains, and post-translational modifications. Frontiers in Cell and Developmental Biology, 3, 8. doi: 10.3389/fcell.2015.00008
  • Oates, M. E., Romero, P., Ishida, T., Ghalwash, M., Mizianty, M. J., Xue, B., … Gough, J. (2013). D(2)P(2): Database of disordered protein predictions. Nucleic Acids Research, 41(D1), D508–D516. doi: 10.1093/nar/gks1226
  • Oldfield, C. J., Cheng, Y., Cortese, M. S., Brown, C. J., Uversky, V. N., & Dunker, A. K. (2005). Comparing and combining predictors of mostly disordered proteins. Biochemistry, 44(6), 1989–2000. doi: 10.1021/bi047993o
  • Oldfield, C. J., Meng, J., Yang, J. Y., Yang, M. Q., Uversky, V. N., & Dunker, A. K. (2008). Flexible nets: Disorder and induced fit in the associations of p53 and 14-3-3 with their partners. BMC Genomics, 9 (Suppl 1), S1. doi: 10.1186/1471-2164-9-S1-S1
  • Orban, T., Palczewska, G., & Palczewski, K. (2011). Retinyl ester storage particles (retinosomes) from the retinal pigmented epithelium resemble lipid droplets in other tissues. Journal of Biological Chemistry, 286(19), 17248–17258. doi: 10.1074/jbc.M110.195198
  • Orlicky, D. J., Degala, G., Greenwood, C., Bales, E. S., Russell, T. D., & McManaman, J. L. (2008). Multiple functions encoded by the N-terminal PAT domain of adipophilin. Journal of Cell Science, 121(17), 2921–2929. doi: 10.1242/jcs.026153
  • Park, Y. W. (2009). Bioactive components in milk and dairy products. Hoboken, NJ: John Wiley & Sons. doi: 10.1002/9780813821504
  • Patil, A., & Nakamura, H. (2006). Disordered domains and high surface charge confer hubs with the ability to interact with multiple proteins in interaction networks. FEBS Letters, 580(8), 2041–2045. doi: 10.1016/j.febslet.2006.03.003
  • Pejaver, V., Hsu, W. L., Xin, F., Dunker, A. K., Uversky, V. N., & Radivojac, P. (2014). The structural and functional signatures of proteins that undergo multiple events of post-translational modification. Protein Science, 23(8), 1077–1093. doi: 10.1002/pro.2494
  • Peng, K., Radivojac, P., Vucetic, S., Dunker, A. K., & Obradovic, Z. (2006). Length-dependent prediction of protein intrinsic disorder. BMC Bioinformatics, 7(1), 208. doi: 10.1186/1471-2105-7-208
  • Peng, K., Vucetic, S., Radivojac, P., Brown, C. J., Dunker, A. K., & Obradovic, Z. (2005). Optimizing long intrinsic disorder predictors with protein evolutionary information. Journal of Bioinformatics and Computational Biology, 03(01), 35–60. doi: 10.1142/S0219720005000886
  • Peng, Z., Yan, J., Fan, X., Mizianty, M. J., Xue, B., Wang, K., … Kurgan, L. (2015). Exceptionally abundant exceptions: Comprehensive characterization of intrinsic disorder in all domains of life. Cellular and Molecular Life Sciences, 72(1), 137–151. doi: 10.1007/s00018-014-1661-9
  • Permyakov, E. A., Permyakov, S. E., Breydo, L., Redwan, E. M., Almehdar, H. A., & Uversky, V. N. (2016a). Disorder in milk proteins: Alpha-lactalbumin. Part C. Peculiarities of metal binding. Current Protein & Peptide Science, 17, 735–745. doi: 10.2174/1389203717666160530151534
  • Permyakov, E. A., Permyakov, S. E., Breydo, L., Redwan, E. M., Almehdar, H. A., & Uversky, V. N. (2016b). Disorder in milk proteins: Alpha-lactalbumin. Part A. Structural properties and conformational behavior. Current Protein & Peptide Science, 17, 352–367. doi: 10.2174/1389203717999160226101133
  • Ploen, D., Hafirassou, M. L., Himmelsbach, K., Sauter, D., Biniossek, M. L., Weiss, T. S., … Hildt, E. (2013). TIP47 plays a crucial role in the life cycle of hepatitis C virus. Journal of Hepatology, 58(6), 1081–1088. doi: 10.1016/j.jhep.2013.01.022
  • Rajagopalan, K., Mooney, S. M., Parekh, N., Getzenberg, R. H., & Kulkarni, P. (2011). A majority of the cancer/testis antigens are intrinsically disordered proteins. Journal of Cellular Biochemistry, 112(11), 3256–3267. doi: 10.1002/jcb.23252
  • Rasmussen, J. T. (2009). Bioactivity of milk fat globule membrane proteins. Australian Journal of Dairy Technology, 64, 63.
  • Redwan, E. M., Al-Hejin, A. M., Almehdar, H. A., Elsaway, A. M., & Uversky, V. N. (2018). Prediction of disordered regions and their roles in the anti-pathogenic and immunomodulatory functions of butyrophilins. Molecules, 23(2), 328. doi: 10.3390/molecules23020328
  • Redwan, E. M., Xue, B., Almehdar, H. A., & Uversky, V. N. (2015). Disorder in milk proteins: Caseins, intrinsically disordered colloids. Current Protein & Peptide Science, 16(3), 228–242. doi: 10.2174/1389203716666150224145900
  • Reinhardt, T. A., & Lippolis, J. D. (2008). Developmental changes in the milk fat globule membrane proteome during the transition from colostrum to milk. Journal of Dairy Science, 91(6), 2307–2318. doi: 10.3168/jds.2007-0952
  • Romero, P. R., Zaidi, S., Fang, Y. Y., Uversky, V. N., Radivojac, P., Oldfield, C. J., … Dunker, A. K. (2006). Alternative splicing in concert with protein intrinsic disorder enables increased functional diversity in multicellular organisms. Proceedings of the National Academy of Sciences United States of America, 103(22), 8390–8395. doi: 10.1073/pnas.0507916103
  • Rowe, E. R., Mimmack, M. L., Barbosa, A. D., Haider, A., Isaac, I., Ouberai, M. M., … Savage, D. B. (2016). Conserved amphipathic helices mediate lipid droplet targeting of perilipins 1-3. Journal of Biological Chemistry, 291(13), 6664–6678. doi: 10.1074/jbc.M115.691048
  • Rudolph, M. C., McManaman, J. L., Hunter, L., Phang, T., & Neville, M. C. (2003). Functional development of the mammary gland: Use of expression profiling and trajectory clustering to reveal changes in gene expression during pregnancy, lactation, and involution. Journal of Mammary Gland Biology and Neoplasia, 8(3), 287–307. doi: 10.1023/B:JOMG.0000010030.73983.57
  • Russell, T. D., Palmer, C. A., Orlicky, D. J., Bales, E. S., Chang, B. H., Chan, L., & McManaman, J. L. (2008). Mammary glands of adipophilin-null mice produce an amino-terminally truncated form of adipophilin that mediates milk lipid droplet formation and secretion. Journal of Lipid Research, 49(1), 206–216. doi: 10.1194/jlr.M700396-JLR200
  • Russell, T. D., Palmer, C. A., Orlicky, D. J., Fischer, A., Rudolph, M. C., Neville, M. C., & McManaman, J. L. (2007). Cytoplasmic lipid droplet accumulation in developing mammary epithelial cells: Roles of adipophilin and lipid metabolism. Journal of Lipid Research, 48(7), 1463–1475. doi: 10.1194/jlr.M600474-JLR200
  • Russell, T. D., Schaack, J., Orlicky, D. J., Palmer, C., Chang, B. H., Chan, L., & McManaman, J. L. (2011). Adipophilin regulates maturation of cytoplasmic lipid droplets and alveolae in differentiating mammary glands. Journal of Cell Science, 124(19), 3247–3253. doi: 10.1242/jcs.082974
  • Saadaoui, B., Henry, C., Khorchani, T., Mars, M., Martin, P., & Cebo, C. (2013). Proteomics of the milk fat globule membrane from Camelus dromedarius. Proteomics, 13(7), 1180–1184. doi: 10.1002/pmic.201200113
  • Sabha, B. H., Alzahrani, F., Almehdar, H. A., Uversky, V. N., & Redwan, E. M. (2018). Disorder in milk proteins: Lactadherin multifunctionality and structure. Current Protein & Peptide Science, 19(10), 983–997. doi: 10.2174/1389203719666180608091849
  • Saito, K., Williams, S., Bulankina, A., Honing, S., & Mustelin, T. (2007). Association of protein-tyrosine phosphatase MEG2 via its Sec14p homology domain with vesicle-trafficking proteins. Journal of Biological Chemistry, 282(20), 15170–15178. doi: 10.1074/jbc.M608682200
  • Schroten, H. (1998). The benefits of human milk fat globule against infection. Nutrition (Burbank, Los Angeles County, California), 14(1), 52–53. doi: 10.1016/S0899-9007(97)00394-8.
  • Shaw, C. S., Sherlock, M., Stewart, P. M., & Wagenmakers, A. J. (2009). Adipophilin distribution and colocalization with lipid droplets in skeletal muscle. Histochemistry and Cell Biology, 131(5), 575–581. doi: 10.1007/s00418-009-0558-4
  • Sincock, P. M., Ganley, I. G., Krise, J. P., Diederichs, S., Sivars, U., O'Connor, B., … Pfeffer, S. R. (2003). Self-assembly is important for TIP47 function in mannose 6-phosphate receptor transport. Traffic, 4(1), 18–25. doi: 10.1034/j.1600-0854.2003.40104.x
  • Singh, G. P., Ganapathi, M., Sandhu, K. S., & Dash, D. (2006). Intrinsic unstructuredness and abundance of PEST motifs in eukaryotic proteomes. Proteins: Structure, Function, and Bioinformatics, 62(2), 309–315. doi: 10.1002/prot.20746
  • Spitsberg, V. L. (2005). Bovine milk fat globule membrane as a potential nutraceutical. Journal of Dairy Science, 88(7), 2289–2294. doi: 10.3168/jds.S0022-0302(05)72906-4
  • Straub, B. K., Gyoengyoesi, B., Koenig, M., Hashani, M., Pawella, L. M., Herpel, E., … Schirmacher, P. (2013). Adipophilin/perilipin-2 as a lipid droplet-specific marker for metabolically active cells and diseases associated with metabolic dysregulation. Histopathology, 62(4), 617–631. doi: 10.1111/his.12038
  • Szklarczyk, D., Franceschini, A., Kuhn, M., Simonovic, M., Roth, A., Minguez, P., … von Mering, C. (2011). The STRING database in 2011: Functional interaction networks of proteins, globally integrated and scored. Nucleic Acids Research, 39(Database), D561–D568. doi: 10.1093/nar/gkq973
  • Sztalryd, C., Bell, M., Lu, X., Mertz, P., Hickenbottom, S., Chang, B. H., … Londos, C. (2006). Functional compensation for adipose differentiation-related protein (ADFP) by Tip47 in an ADFP null embryonic cell line. Journal of Biological Chemistry, 281(45), 34341–34348. doi: 10.1074/jbc.M602497200
  • Sztalryd, C., & Brasaemle, D. L. (2017). The perilipin family of lipid droplet proteins: Gatekeepers of intracellular lipolysis. Biochimica et Biophysica Acta-Molecular and Cell Biology of Lipids, 1862(10), 1221–1232. doi: 10.1016/j.bbalip.2017.07.009
  • Sztalryd, C., & Kimmel, A. R. (2014). Perilipins: Lipid droplet coat proteins adapted for tissue-specific energy storage and utilization, and lipid cytoprotection. Biochimie, 96, 96–101. doi: 10.1016/j.biochi.2013.08.026
  • Tansey, J. T., Huml, A. M., Vogt, R., Davis, K. E., Jones, J. M., Fraser, K. A., … Londos, C. (2003). Functional studies on native and mutated forms of perilipins. A role in protein kinase A-mediated lipolysis of triacylglycerols. Journal of Biological Chemistry, 278(10), 8401–8406. doi: 10.1074/jbc.M211005200
  • Tansey, J. T., Sztalryd, C., Gruia-Gray, J., Roush, D. L., Zee, J. V., Gavrilova, O., … Londos, C. (2001). Perilipin ablation results in a lean mouse with aberrant adipocyte lipolysis, enhanced leptin production, and resistance to diet-induced obesity. Proceedings of the National Academy of Sciences United States of America, 98(11), 6494–6499. doi: 10.1073/pnas.101042998
  • Targett-Adams, P., Chambers, D., Gledhill, S., Hope, R. G., Coy, J. F., Girod, A., & McLauchlan, J. (2003). Live cell analysis and targeting of the lipid droplet-binding adipocyte differentiation-related protein. Journal of Biological Chemistry, 278(18), 15998–16007. doi: 10.1074/jbc.M211289200
  • Targett-Adams, P., McElwee, M. J., Ehrenborg, E., Gustafsson, M. C., Palmer, C. N., & McLauchlan, J. (2005). A PPAR response element regulates transcription of the gene for human adipose differentiation-related protein. Biochimica et Biophysica Acta, 1728(1-2), 95–104. doi: 10.1016/j.bbaexp.2005.01.017
  • Than, N. G., Sumegi, B., Bellyei, S., Berki, T., Szekeres, G., Janaky, T., … Than, G. N. (2003). Lipid droplet and milk lipid globule membrane associated placental protein 17b (PP17b) is involved in apoptotic and differentiation processes of human epithelial cervical carcinoma cells. European Journal of Biochemistry, 270(6), 1176–1188. doi: 10.1046/j.1432-1033.2003.03475.x
  • Than, N. G., Sumegi, B., Than, G. N., Kispal, G., & Bohn, H. (1998). Cloning and sequence analysis of cDNAs encoding human placental tissue protein 17 (PP17) variants. European Journal of Biochemistry, 258(2), 752–757. doi: 10.1046/j.1432-1327.1998.2580752.x
  • Than, N. G., Sumegi, B., Than, G. N., Kispal, G., & Bohn, H. (1999). Is placental tissue protein 17b/TIP47 a new factor in cervical cancer genesis? Journal of Obstetrics and Gynaecology Research, 19, 5255–5258. doi: 10.1046/j.1341-8076.2002.00003.x
  • Tokuriki, N., Oldfield, C. J., Uversky, V. N., Berezovsky, I. N., & Tawfik, D. S. (2009). Do viral proteins possess unique biophysical features? Trends in Biochemical Sciences, 34(2), 53–59. doi: 10.1016/j.tibs.2008.10.009
  • Tompa, P. (2002). Intrinsically unstructured proteins. Trends in Biochemical Sciences, 27(10), 527–533. doi: 10.1016/S0968-0004(02)02169-2
  • Tompa, P. (2005). The interplay between structure and function in intrinsically unstructured proteins. FEBS Letters, 579(15), 3346–3354. doi: 10.1016/j.febslet.2005.03.072
  • Tompa, P. (2012). Intrinsically disordered proteins: A 10-year recap. Trends in Biochemical Sciences, 37(12), 509–516. doi: 10.1016/j.tibs.2012.08.004
  • Tompa, P., & Csermely, P. (2004). The role of structural disorder in the function of RNA and protein chaperones. The FASEB Journal, 18(11), 1169–1175. doi: 10.1096/fj.04-1584rev
  • Tompa, P., Szasz, C., & Buday, L. (2005). Structural disorder throws new light on moonlighting. Trends in Biochemical Sciences, 30(9), 484–489. doi: 10.1016/j.tibs.2005.07.008
  • Turoverov, K. K., Kuznetsova, I. M., & Uversky, V. N. (2010). The protein kingdom extended: Ordered and intrinsically disordered proteins, their folding, supramolecular complex formation, and aggregation. Progress in Biophysics & Molecular Biology, 102(2-3), 73–84. doi: 10.1016/j.pbiomolbio.2010.01.003
  • Uversky, V. N. (2002a). Natively unfolded proteins: A point where biology waits for physics. Protein Science, 11(4), 739–756. doi: 10.1110/ps.4210102
  • Uversky, V. N. (2002b). What does it mean to be natively unfolded?. European Journal of Biochemistry, 269(1), 2–12. doi: 10.1046/j.0014-2956.2001.02649.x
  • Uversky, V. N. (2003). Protein folding revisited. A polypeptide chain at the folding-misfolding-nonfolding cross-roads: Which way to go? Cellular and Molecular Life Sciences, 60(9), 1852–1871. doi: 10.1007/s00018-003-3096-6
  • Uversky, V. N. (2010). The mysterious unfoldome: Structureless, underappreciated, yet vital part of any given proteome. Journal of Biomedicine and Biotechnology, 2010, 1. doi: 10.1155/2010/568068
  • Uversky, V. N. (2013a). A decade and a half of protein intrinsic disorder: Biology still waits for physics. Protein Science, 22(6), 693–724. doi: 10.1002/pro.2261
  • Uversky, V. N. (2013b). Intrinsic disorder-based protein interactions and their modulators. Current Pharmaceutical Design, 19(23), 4191–4213. doi: 10.2174/1381612811319230005
  • Uversky, V. N. (2013c). Unusual biophysics of intrinsically disordered proteins. Biochimica et Biophysica Acta, 1834(5), 932–951. doi: 10.1016/j.bbapap.2012.12.008
  • Uversky, V. N. (2015). Functional roles of transiently and intrinsically disordered regions within proteins. The FEBS Journal, 282(7), 1182–1189. doi: 10.1111/febs.13202
  • Uversky, V. N. (2016a). Dancing protein clouds: The strange biology and chaotic physics of intrinsically disordered proteins. Journal of Biological Chemistry, 291(13), 6681–6688. doi: 10.1074/jbc.R115.685859
  • Uversky, V. N. (2016b). p53 Proteoforms and intrinsic disorder: An illustration of the protein structure-function continuum concept. International Journal of Molecular Sciences, 17(11), 1874. doi: 10.3390/ijms17111874
  • Uversky, V. N., Dave, V., Iakoucheva, L. M., Malaney, P., Metallo, S. J., Pathak, R. R., & Joerger, A. C. (2014). Pathological unfoldomics of uncontrolled chaos: Intrinsically disordered proteins and human diseases. Chemical Reviews, 114(13), 6844–6879. doi: 10.1021/cr400713r
  • Uversky, V. N., & Dunker, A. K. (2010). Understanding protein non-folding. Biochimica et Biophysica Acta, 1804(6), 1231–1264. doi: 10.1016/j.bbapap.2010.01.017
  • Uversky, V. N., & Dunker, A. K. (2013). The case for intrinsically disordered proteins playing contributory roles in molecular recognition without a stable 3D structure. F1000 Biology Reports, 5, 1. doi: 10.3410/B5-1
  • Uversky, V. N., Gillespie, J. R., & Fink, A. L. (2000). Why are "natively unfolded" proteins unstructured under physiologic conditions? Proteins: Structure, Function, and Genetics, 41(3), 415–427. doi: 10.1002/1097-0134(20001115)41:3 < 415::aid-prot130 > 3.3.co;2-z
  • Uversky, V. N., Oldfield, C. J., & Dunker, A. K. (2005). Showing your ID: Intrinsic disorder as an ID for recognition, regulation and cell signaling. Journal of Molecular Recognition, 18(5), 343–384. doi: 10.1002/jmr.747
  • Uversky, V. N., Oldfield, C. J., & Dunker, A. K. (2008). Intrinsically disordered proteins in human diseases: Introducing the D2 concept. Annual Review of Biophysics, 37(1), 215–246. doi: 10.1146/annurev.biophys.37.032807.125924
  • Uversky, V. N., Permyakov, S. E., Breydo, L., Redwan, E. M., Almehdar, H. A., & Permyakov, E. A. (2016). Disorder in milk proteins: Alpha-lactalbumin. Part B. A multifunctional whey protein acting as an oligomeric molten globular "oil container" in the anti-tumorigenic drugs, liprotides. Current Protein & Peptide Science, 17, 612–628. doi: 10.2174/1389203717666151203003151
  • Vogt, D. A., Camus, G., Herker, E., Webster, B. R., Tsou, C. L., Greene, W. C., … Ott, M. (2013). Lipid droplet-binding protein TIP47 regulates hepatitis C Virus RNA replication through interaction with the viral NS5A protein. PLoS Pathogens, 9(4), e1003302. doi: 10.1371/journal.ppat.1003302
  • Vucetic, S., Xie, H., Iakoucheva, L. M., Oldfield, C. J., Dunker, A. K., Obradovic, Z., & Uversky, V. N. (2007). Functional anthology of intrinsic disorder. 2. Cellular components, domains, technical terms, developmental processes, and coding sequence diversities correlated with long disordered regions. Journal of Proteome Research, 6(5), 1899–1916. doi: 10.1021/pr060393m
  • Wang, K., Ruan, H., Song, Z., Cao, Q., Bao, L., Liu, D., … Zhang, X. (2018). PLIN3 is up-regulated and correlates with poor prognosis in clear cell renal cell carcinoma. Urol Oncol, 36, 343. doi: 10.1016/j.urolonc.2018.04.006
  • Wang, X., Reape, T. J., Li, X., Rayner, K., Webb, C. L., Burnand, K. G., & Lysko, P. G. (1999). Induced expression of adipophilin mRNA in human macrophages stimulated with oxidized low-density lipoprotein and in atherosclerotic lesions. FEBS Letters, 462(1-2), 145–150. doi: 10.1016/S0014-5793(99)01521-5
  • Ward, J. J., Sodhi, J. S., McGuffin, L. J., Buxton, B. F., & Jones, D. T. (2004). Prediction and functional analysis of native disorder in proteins from the three kingdoms of life. Journal of Molecular Biology, 337(3), 635–645. doi: 10.1016/j.jmb.2004.02.002
  • Wolins, N. E., Brasaemle, D. L., & Bickel, P. E. (2006). A proposed model of fat packaging by exchangeable lipid droplet proteins. FEBS Letters, 580(23), 5484–5491. doi: 10.1016/j.febslet.2006.08.040
  • Wolins, N. E., Quaynor, B. K., Skinner, J. R., Schoenfish, M. J., Tzekov, A., & Bickel, P. E. (2005). S3-12, adipophilin, and TIP47 package lipid in adipocytes. Journal of Biological Chemistry, 280(19), 19146–19155. doi: 10.1074/jbc.M500978200
  • Wolins, N. E., Rubin, B., & Brasaemle, D. L. (2001). TIP47 associates with lipid droplets. Journal of Biological Chemistry, 276(7), 5101–5108. doi: 10.1074/jbc.M006775200
  • Wright, P. E., & Dyson, H. J. (1999). Intrinsically unstructured proteins: Re-assessing the protein structure-function paradigm. Journal of Molecular Biology, 293(2), 321–331. doi: 10.1006/jmbi.1999.3110
  • Wu, C. C., Howell, K. E., Neville, M. C., Yates, J. R., & McManaman, J. L. (2000). Proteomics reveal a link between the endoplasmic reticulum and lipid secretory mechanisms in mammary epithelial cells. Electrophoresis, 21(16), 3470–3482. doi: 10.1002/1522-2683(20001001)21:16 < 3470::AID-ELPS3470 > 3.0.CO;2-G
  • Xie, H., Vucetic, S., Iakoucheva, L. M., Oldfield, C. J., Dunker, A. K., Obradovic, Z., & Uversky, V. N. (2007a). Functional anthology of intrinsic disorder. 3. Ligands, post-translational modifications, and diseases associated with intrinsically disordered proteins. Journal of Proteome Research, 6(5), 1917–1932. doi: 10.1021/pr060394e
  • Xie, H., Vucetic, S., Iakoucheva, L. M., Oldfield, C. J., Dunker, A. K., Uversky, V. N., & Obradovic, Z. (2007b). Functional anthology of intrinsic disorder. 1. Biological processes and functions of proteins with long disordered regions. Journal of Proteome Research, 6(5), 1882–1898. doi: 10.1021/pr060392u
  • Xu, G., Sztalryd, C., Lu, X., Tansey, J. T., Gan, J., Dorward, H., … Londos, C. (2005). Post-translational regulation of adipose differentiation-related protein by the ubiquitin/proteasome pathway. Journal of Biological Chemistry, 280(52), 42841–42847. doi: 10.1074/jbc.M506569200
  • Xue, B., Dunbrack, R. L., Williams, R. W., Dunker, A. K., & Uversky, V. N. (2010). PONDR-FIT: A meta-predictor of intrinsically disordered amino acids. Biochimica et Biophysica Acta, 1804(4), 996–1010. doi: 10.1016/j.bbapap.2010.01.011
  • Xue, B., Dunker, A. K., & Uversky, V. N. (2012). Orderly order in protein intrinsic disorder distribution: Disorder in 3500 proteomes from viruses and the three domains of life. Journal of Biomolecular Structure and Dynamics, 30(2), 137–149. doi: 10.1080/07391102.2012.675145
  • Xue, B., Oldfield, C. J., Dunker, A. K., & Uversky, V. N. (2009). CDF it all: Consensus prediction of intrinsically disordered proteins based on various cumulative distribution functions. FEBS Letters, 583(9), 1469–1474. doi: 10.1016/j.febslet.2009.03.070
  • Xue, B., Williams, R. W., Oldfield, C. J., Dunker, A. K., & Uversky, V. N. (2010). Archaic chaos: Intrinsically disordered proteins in Archaea. BMC Systems Biology, 4 (Suppl 1), S1. doi: 10.1186/1752-0509-4-S1-S1
  • Yamaguchi, T. (2007). [PAT family: Lipid droplet-associated proteins that regulate fat storage and lipolysis]. Seikagaku, 79, 162–166.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.