118
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Interaction of proflavine with the RNA polynucleotide polyriboadenylic acid–polyribouridylic acid: photophysical and calorimetric studies

&
Pages 1590-1597 | Received 21 Mar 2019, Accepted 25 Apr 2019, Published online: 17 May 2019

References

  • Atwell, G. J., Rewcastle, G. W., Baguley, B. C., & Denny, W. A. (1987). Potential antitumor agents. In vivo solid-tumor activity of derivatives of N-[2-(dimethylamino)ethyl]acridine-4-carboxamide. Journal of Medicinal Chemistry, 30(4), 664–669. doi:10.1021/jm00387a014
  • Basu, A., & Suresh Kumar, G. (2014). Targeting proteins with toxic azo dyes: a microcalorimetric characterization of the interaction of the food colorant amaranth with serum proteins. Journal of Agricultural and Food Chemistry, 62(31), 7955–7962. doi:10.1021/jf5025278
  • Basu, A., & Suresh Kumar, G. (2015a). Thermodynamic characterization of proflavine-DNA binding through microcalorimetric studies. The Journal of Chemical Thermodynamics, 87, 1–7. doi:10.1016/j.jct.2015.03.009
  • Basu, A., & Suresh Kumar, G. (2015b). Thermodynamics of the interaction of the food additive tartrazine with serum albumins: a microcalorimetric investigation. Food Chemistry, 175, 137–142. doi:10.1016/j.foodchem.2014.11.141
  • Basu, A., & Suresh Kumar, G. (2016a). A microcalorimetric study on the binding of proflavine with tRNAphe. Journal of Chemical Thermodynamics, 97, 173–178. doi:10.1016/j.jct.2016.01.018
  • Basu, A., & Suresh Kumar, G. (2016b). Calorimetric investigation on the interaction of proflavine with human telomeric G-quadruplex DNA. Journal of Chemical Thermodynamics, 98, 208–213. doi:10.1016/j.jct.2016.03.005
  • Basu, A., & Suresh Kumar, G. (2016c). Thermodynamics of the induction of self-structure in polyadenylic acid by proflavine. Journal of Chemical Thermodynamics, 100, 100–105. doi:10.1016/j.jct.2016.04.017
  • Basu, A., & Suresh Kumar, G. (2016d). Coralyne induced self-structure in polyadenylic acid: thermodynamics of the structural reorganization. Journal of Chemical Thermodynamics, 101, 221–226. doi:10.1016/j.jct.2016.06.002
  • Basu, A., Jaisankar, P., & Suresh Kumar, G. (2012). Synthesis of novel 9-O-N-aryl/aryl–alkyl amino carbonyl methyl substituted berberine analogs and evaluation of DNA binding aspects. Bioorganic & Medicinal Chemistry, 20, 2498–2505. doi:10.1016/j.bmc.2012.03.006
  • Basu, A., Jaisankar, P., & Suresh Kumar, G. (2013). Binding of the 9-O-N-aryl/arylalkyl amino carbonyl methyl substituted berberine analogs to tRNAphe. PLoS ONE, 8(3), e58279. doi:10.1371/journal.pone.0058279
  • Basu, A., Jaisankar, P., & Suresh Kumar, G. (2014). Interaction of 9-O-N-aryl/arylalkyl amino carbonyl methyl berberineanalogs with single stranded ribonucleotides. Journal of Photochemistry and Photobiology B: Biology, 134, 64–74. doi:10.1016/j.jphotobiol.2014.03.024
  • Belmont, P., Bosson, J., Godet, T., & Tiano, M. (2007). Acridine and acridone derivatives, anticancer properties and synthetic methods: where are we now?. Anti-Cancer Agents in Medicinal Chemistry, 7(2), 139–169. doi:10.2174/187152007780058669
  • Bhowmik, D., Buzzetti, F., Fiorillo, G., Franchini, L., Monir Syeda, T., Lombardi, P., & Suresh Kumar, G. (2014). Calorimetry and thermal analysis studies on the binding of 13-phenylalkyl and 13-diphenylalkyl berberine analogs to tRNAphe. Journal of Thermal Analysis and Calorimetry, 118(1), 461–473. doi:10.1007/s10973-014-3983-0
  • Bhowmik, D., Fiorillo, G., Lombardi, P., & Suresh Kumar, G. (2015). Calorimetric insights into the interaction of novel berberrubine derivatives with human telomeric G-quadruplex DNA sequence. Journal of Molecular Recognition, 28(12), 722–730. doi:10.1002/jmr.2486
  • Buchmueller, K. L., Bailey, S. L., Matthews, D. A., Taherbhai, Z. T., Register, J. K., Davis, Z. S., … Lee, M. (2006). Physical and structural basis for the strong interactions of the -ImPy- central pairing motif in the polyamide f-ImPyIm. Biochemistry, 45(45), 13551–13565. doi:10.1021/bi061245c
  • Chaires, J. B. (2006). A thermodynamic signature for drug-DNA binding mode. Archives of Biochemistry and Biophysics, 453(1), 26–31. doi:10.1016/j.abb.2006.03.027
  • Cheng, A. C., Calabro, V., & Frankel, A. D. (2001). Design of RNA binding proteins and ligands. Current Opinion in Structural Biology, 11(4), 478–484. doi:10.1016/S0959-440X(00)00236-0
  • Crenshaw, J. M., Graves, D. E., & Denny, W. A. (1995). Interactions of acridine antitumor agents with DNA: binding energies and groove preferences. Biochemistry, 34(41), 13682–13687. doi:10.1021/bi00041a050
  • Das, A., & Suresh Kumar, G. (2012). Probing the binding of two sugar bearing anticancer agents aristololactam–β-D-glucoside and daunomycin to double stranded RNA polynucleotides: a combined spectroscopic and calorimetric study. Molecular Biosystems, 8(7), 1958–1969. doi:10.1039/c2mb25080b
  • Deev, S. M., Barbakar, N. I., Karlyshev, A. V., Sakharova, N. K., & Grechko, V. V. (1980). Synthesis of double-stranded DNA on light immunoglobulin chain matrix RNA. Molecular Biology (Mosk), 14, 413–420.
  • Demeunynck, M., Chamantray, F., & Martelli, A. (2001). Interest of acridine derivatives in the anticancer chemotherapy. Current Pharmaceutical Design, 7, 1703–1724.
  • Denny, W. A. (2002). Acridine derivatives as chemotherapeutic agents. Current Medicinal Chemistry, 9, 1655–1665.
  • Denny, W. A. (2004). Chemotherapeutic effects of acridine derivatives. Medicinal Chemistry Reviews - Online, 1, 257–266. doi:10.2174/1567203043401923
  • Esau, C. C., & Monia, B. P. (2007). Therapeutic potential for microRNAs. Advanced Drug Delivery Reviews, 59(2–3), 101–114. doi:10.1016/j.addr.2007.03.007
  • Ferguson, L. R., & Denny, W. A. (1991). The genetic toxicology of acridines. Mutation Research/Reviews in Genetic Toxicology, 258(2), 123–160. doi:10.1016/0165-1110(91)90006-H
  • Fuchs, U., & Borkhardt, A. (2007). The application of siRNA technology to cancer biology discovery. Advances in Cancer Research, 96, 75–102.
  • Gait, M. J., & Karn, J. (1995). Progress in anti-HIV structure-based drug design. Trends in Biotechnology, 10, 430–438. doi:10.1016/S0167-7799(00)88998-2
  • Gallego, J., & Varani, G. (2001). Targeting RNA with small-molecule drugs: therapeutic promise and chemical challenges. Accounts of Chemical Research, 34(10), 836–843. doi:10.1021/ar000118k
  • Garbett, N. C., Hammond, N. B., & Graves, D. E. (2004). Influence of the amino substituents in the interaction of ethidium bromide with DNA. Biophysical Journal, 87(6), 3974–3981. doi:10.1529/biophysj.104.047415
  • Giri, P., Hossain, M., & Suresh Kumar, G. (2006). Molecular aspects on the specific interaction of cytotoxic plant alkaloid palmatine to poly(A). International Journal of Biological Macromolecules, 39(4–5), 210–221. doi:10.1016/j.ijbiomac.2006.03.026
  • Giri, P., & Suresh Kumar, G. (2007). Specific binding and self-structure induction to poly(A) by the cytotoxic plant alkaloid sanguinarine. Biochimica et Biophysica Acta General Subjects, 1770(9), 1419–1426. doi:10.1016/j.bbagen.2007.05.005
  • Guthrie, K. M., Parenty, A. D. C., Smith, L. V., Cronin, L., & Cooper, A. (2007). Microcalorimetry of interaction of dihydro-imidazo-phenanthridinium (DIP)-based compounds with duplex DNA. Biophysical Chemistry, 126(1–3), 117–123. doi:10.1016/j.bpc.2006.05.006
  • Ha, J. H., Spolar, R. S., & Record, M. T. Jr., (1989). Role of the hydrophobic effect in stability of site-specific protein-DNA complexes. Journal of Molecular Biology, 209(4), 801–816. doi:10.1016/0022-2836(89)90608-6
  • Hermann, T. (2002). Rational ligand design for RNA: The role of static structure and conformational flexibility in target recognition. Biochimie, 84(9), 869–875. doi:10.1016/S0300-9084(02)01460-8
  • Islam, M. M., Chowdhury, S. R., & Suresh Kumar, G. (2009). Spectroscopic and calorimetric studies on the binding of alkaloids berberine, palmatine and coralyne to double stranded RNA polynucleotides. The Journal of Physical Chemistry B, 113(4), 1210–1224. doi:10.1021/jp806597w
  • Jen-Jacobson, L., Engler, L. E., & Jacobson, L. A. (2000). Structural and thermodynamic strategies for site-specific DNA binding proteins. Structure, 8(10), 1015–1023.
  • Job, P. (1928). Formation and stability of inorganic complexes in solution. Annali di Chimica, 9, 113–203.
  • Khan, A. Y., Saha, U., Fiorillo, G., Lombardi, P., & Suresh Kumar, G. (2018). Calorimetric insights into the interaction of novel berberrubine derivatives with human telomeric G-quadruplex DNA sequence. Journal of Thermal Analysis and Calorimetry, 132(1), 623–630. doi:10.1007/s10973-018-6960-1
  • Le Pecq, J. B., & Paoletti, C. (1967). A fluorescent complex between ethidium bromide and nucleic acids. Physical-chemical characterization. Journal of Molecular Biology, 27, 87–106. doi:10.1016/0022-2836(67)90353-1
  • Lerman, L. S. (1961). Structural considerations in the interaction of DNA and acridines. Journal of Molecular Biology, 3(1), 18–30. doi:10.1016/S0022-2836(61)80004-1
  • Manning, G. S. (1978). The molecular theory of polyelectrolyte solutions with applications to the electrostatic properties of polynucleotides. Quarterly Reviews of Biophysics, 11(02), 179–246. doi:10.1017/S0033583500002031
  • Marky, L. A., Blumenfeld, K. S., & Breslauer, K. J. (1983). Interaction of diamidino-2-phenylindole (DAPI) with natural and synthetic nucleic acids. Nucleic Acids Research, 11(9), 2857–2870.
  • Mehmet, A. (2006). Electrochemical and spectroscopic studies of the interaction of proflavine with DNA. Analytical Sciences, 22, 439–443.
  • Murphy, F. V., IV., & Churchill, M. E. A. (2000). Nonsequence-specific DNA recognition: a structural perspective. Structure, 8(4), R83–R89. doi:10.1016/S0969-2126(00)00126-X
  • Nash, S. C., Ketcham, A. S., & Smith, R. R. (1962). Effect of local irrigation with proflavine hemisulfate on wounds seeded with tumor cells: an experimental study. Annals of Surgery, 155(3), 465–471. doi:10.1097/00000658-196203000-00023
  • Neidle, S., Pearl, L. H., Herzyk, P., & Berman, H. M. (1988). A molecular model for proflavine-DNA intercalation. Nucleic Acids Research, 16(18), 8999–9016. doi:10.1093/nar/16.18.8999
  • Nelson, P., Kiriakidou, M., Sharma, A., Maniataki, E., & Mourelatos, Z. (2003). The microRNA world: small is mighty. Trends in Biochemical Sciences, 28(10), 534–540. doi:10.1016/j.tibs.2003.08.005
  • Ngadi, L., Galy, A., Galy, J., Barbe, J., Crémieux, A., Chevalier, J., & Sharples, D. (1990). Synthesis, antiproliferative, and antiviral activity of certain 4-substituted and 4,5-disubstituted 7-[(1,3-dihydroxy-2-propoxy)methyl]pyrrolo[2,3-d]pyrimidines. European Journal of Medicinal Chemistry, 25(1), 67–70.
  • O'Brien, R., DeDecker, B., Fleming, K. G., Sigler, P. B., & Ladbury, J. E. (1998). The effects of salt on the TATA binding protein-DNA interaction from a hyperthermophilic archaeon. Journal of Molecualr Biology, 279, 117–125. doi:10.1006/jmbi.1998.1743
  • Pal Singh, N., Kumar, R., Prasad, D. N., Sharma, S., & Silakari, O. (2011). Synthesis and antibacterial activity of benzotriazole substituted acridines. International Journal of Biological Chemistry, 5, 193–199. doi:10.3923/ijbc.2011.193.199
  • Record, M. T., Jr., Lohman, T. M., & De Haseth, P. (1976). Ion effects on ligand-nucleic acid interactions. Journal of Molecular Biology, 107(2), 145–158.
  • Record, M. T., Jr., & Spolar, R. S. (1990). In A. Revzin (Ed.), The Biology of Nonspecific DNA-Protein Interactions. Boca Raton, FL: CRC Press.
  • Reinhardt, C. G., Roques, B. P., & Le Pecq, J. B. (1982). Binding of bifunctional ethidium intercalators to transfer RNA. Biochemical and Biophysical Research Communications, 104(4), 1376–1385. doi:10.1016/0006-291X(82)91402-4
  • Ren, J., Jenkins, T. C., & Chaires, J. B. (2000). Energetics of DNA intercalation reactions. Biochemistry, 39(29), 8439–8447.
  • Rewcastle, G. W., Atwell, G. J., Chambers, D., Baguley, B. C., & Denny, W. A. (1986). Potential antitumor agents. Structure − activity relationships for acridine monosubstituted derivatives of the antitumor agent N-[2-(dimethylamino)ethyl]-9-aminoacridine-4-carboxamide. Journal of Medicinal Chemistry, 29(4), 472–477. doi:10.1021/jm00154a008
  • Ross, P. D., & Subramanian, S. (1981). Thermodynamics of protein association reactions: forces contributing to stability. Biochemistry, 20(11), 3096–3102. doi:10.1021/bi00514a017
  • Sall, A., Liu, Z., Zhang, H. M., Yuan, J., Lim, T., Su, Y., & Yang, D. (2008). MicroRNAs-based therapeutic strategy for virally induced diseases. Current Drug Discovery Technologies, 5, 49–58. doi:10.2174/157016308783769478
  • Sari, M. A., Battioni, J. P., Dupre, D., Mansuy, D., & Le Pecq, J. B. (1990). Interaction of cationic porphyrins with DNA: importance of the number and position of the charges and minimum structural requirements for intercalation. Biochemistry, 29(17), 4205–4215. doi:10.1021/bi00469a025
  • Scaria, P. V., & Shafer, R. H. (1991). Binding of ethidium bromide to a DNA triple helix. Evidence for intercalation. The Journal of Biological Chemistry, 266, 5417–5423.
  • Sinha, R., Hossain, M., & Suresh Kumar, G. (2009). Interaction of small molecules with double-stranded RNA: spectroscopic, viscometric, and calorimetric study of hoechst and proflavine binding to polyCG structures. DNA and Cell Biology, 28(4), 209–219. doi:10.1089/dna.2008.0838
  • Sinha, R., & Suresh Kumar, G. (2009). Interaction of isoquinoline alkaloids with an RNA triplex: structural and thermodynamic studies of berberine, palmatine, and coralyne binding to poly(U).poly(A)*poly(U). Journal of Physical Chemistry B, 113(40), 13410–13420. doi:10.1021/jp9069515
  • Tang, P., Juang, C. L., & Harbison, G. S. (1990). Intercalation complex of proflavine with DNA: structure and dynamics by solid-state NMR. Science, 249(4964), 70–72.
  • Todd, A. K., Adams, A., Thorpe, J. H., Denny, W. A., Wakelin, L. P. G., & Cardin, C. J. (1999). Major groove binding and ‘DNA-Induced' fit in the intercalation of a derivative of the mixed topoisomerase I/II poison N-(2-(dimethylamino)ethyl)acridine-4- carboxamide (DACA) into DNA: X-ray structure complexed to d(CG(5-BrU)ACG)2 at 1.3-Å resolution. Journal of Medicinal Chemistry, 42(4), 536–540. doi:10.1021/jm980479u
  • Tor, Y. (2003). Targeting RNA with small molecules. Chembiochem : a European Journal of Chemical Biology, 4(10), 998–1007. doi:10.1002/cbic.200300680
  • Tripp, R. A., & Bakre, A. A. (2017). Roles of non-coding RNAs in respiratory syncytial virus (RSV) infection. In: Current Topics in Microbiology and Immunology. Berlin: Springer.
  • Vicens, Q., & Westhof, E. (2003). RNA as a drug target: The case of aminoglycosides. Chembiochem: A European Journal of Chemical Biology, 4(10), 1018–1023. doi:10.1002/cbic.200300684
  • Zarudnaya, M. I., & Hovorun, D. M. (1999). Hypothetical double‐helical poly(A) formation in a cell and its possible biological significance. Iubmb: Life, 48(6), 581–584. doi:10.1080/152165499306441

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.