207
Views
3
CrossRef citations to date
0
Altmetric
Research Articles

RNA targeting by an anthracycline drug: spectroscopic and in silico evaluation of epirubicin interaction with tRNA

, &
Pages 1761-1771 | Received 25 Feb 2019, Accepted 03 May 2019, Published online: 22 May 2019

References

  • Afzal, M., Al-Lohedan, H. A., Usman, M., & Tabassum, S. (2019). Carbohydrate-based heteronuclear complexes as topoisomerase Iα inhibitor: approach Toward anticancer chemotherapeutics. Journal of Biomolecular Structure and Dynamics, 37(6), 1494–1510. doi:10.1080/07391102.2018.1459321
  • Agudelo, D., Bourassa, P., Beauregard, M., Bérubé, G., & Tajmir-Riahi, H.-A. (2013). tRNA binding to antitumor drug doxorubicin and its analogue. PLoS One, 8(7), e69248p doi:10.1371/journal.pone.0069248
  • Agudelo, D., Bourassa, P., Bérubé, G., & Tajmir-Riahi, H. (2016). Review on the binding of anticancer drug doxorubicin with DNA and tRNA: Structural models and antitumor activity. Journal of Photochemistry and Photobiology B: Biology, 158, 274–279. doi:10.1016/j.jphotobiol.2016.02.032
  • Baker, M. J., Trevisan, J., Bassan, P., Bhargava, R., Butler, H. J., Dorling, K. M., … Martin, F. L. (2014). Using Fourier transform IR spectroscopy to analyze biological materials. Nature Protocols, 9(8), 1771. doi:10.1038/nprot.2014.110
  • Bandyopadhyay, N., Basu, P., Kumar, G. S., Guhathakurta, B., Singh, P., & Naskar, J. P. (2017). Biophysical studies on the interaction of a novel oxime based palladium (II) complex with DNA and RNA. Journal of Photochemistry and Photobiology B, 173, 560–570. doi:10.1016/j.jphotobiol.2017.06.044
  • Belmont, P., Constant, J.-F., & Demeunynck, M. (2001). Nucleic acid conformation diversity: from structure to function and regulation. Chemical Society Reviews, 30(1), 70–81. doi:10.1039/a904630e
  • Bhowmik, D., Hossain, M., Buzzetti, F., D’Auria, R., Lombardi, P., & Kumar, G. S. (2012). Biophysical studies on the effect of the 13 position substitution of the anticancer alkaloid berberine on its DNA binding. The Journal of Physical Chemistry B, 116(7), 2314–2324. doi:10.1021/jp210072a
  • Burnett, J. C., & Rossi, J. J. (2012). RNA-based therapeutics: Current progress and future prospects. Chemistry & Biology, 19(1), 60–71. doi:10.1016/j.chembiol.2011.12.008
  • Carmona, P., Rodrı́guez-Casado, A., &., & Molina, M. (1999). Conformational structure and binding mode of glyceraldehyde-3-phosphate dehydrogenase to tRNA studied by Raman and CD spectroscopy. Biochimica et Biophysica Acta (BBA)-Protein Structure and Molecular Enzymology, 1432(2), 222–233. doi:10.1016/S0167-4838(99)00113-2
  • Chaires, J. B. (1997). Energetics of drug–DNA interactions. Biopolymers: Original Research on Biomolecules, 44(3), 201–215. doi:10.1002/(SICI)1097-0282(1997)44:3<201::AID-BIP2>3.0.CO;2-Z
  • Chaires, J. B. (2006). A thermodynamic signature for drug-DNA binding mode. Archives of Biochemistry and Biophysics, 453(1), 26–31. doi:10.1016/j.abb.2006.03.027
  • Charak, S., Jangir, D. K., Tyagi, G., & Mehrotra, R. (2011). Interaction studies of epirubicin with DNA using spectroscopic techniques. Journal of Molecular Structure, 1000, 150–154. doi:10.1016/j.molstruc.2011.06.013
  • Charak, S., & Mehrotra, R. (2013). Structural investigation of idarubicin–DNA interaction: Spectroscopic and molecular docking study. International Journal of Biological Macromolecules, 60, 213–218. doi:10.1016/j.ijbiomac.2013.05.027
  • Charak, S., Shandilya, M., Tyagi, G., & Mehrotra, R. (2012). Spectroscopic and molecular docking studies on chlorambucil interaction with DNA. International Journal of Biological Macromolecules, 51(4), 406–411. doi:10.1016/j.ijbiomac.2012.06.012
  • Chen, L., & Frankel, A. D. (1995). A peptide interaction in the major groove of RNA resembles protein interactions in the minor groove of DNA. Proceedings of the National Academy of Sciences United States of America, 92(11), 5077–5081. doi:10.1073/pnas.92.11.5077
  • Chenoweth, D. M., Meier, J. L., & Dervan, P. B. (2013). Pyrrole‐imidazole polyamides distinguish between double‐helical DNA and RNA. Angewandte Chemie, 125(1), 433–436. doi:10.1002/ange.201205775
  • Cheong, H.-K., Hwang, E., Lee, C., Choi, B.-S., & Cheong, C. (2004). Rapid preparation of RNA samples for NMR spectroscopy and X-ray crystallography. Nucleic Acids Research, 32(10), e84–e84. doi:10.1093/nar/gnh081
  • Connelly, C. M., Moon, M. H., & Schneekloth, J. S. (2016). The emerging role of RNA as a therapeutic target for small molecules. Cell Chemical Biology, 23(9), 1077–1090. doi:10.1016/j.chembiol.2016.05.021
  • Connors, K. A. (1987). In binding constants: The measurement of molecular complex stability New York: Wiley-Interscience.
  • Coukell, A. J., & Faulds, D. (1997). Epirubicin. An updated review of its pharmacodynamic and pharmacokinetic properties and therapeutic efficacy in the management of breast cancer. Drugs, 53(3), 453–482. doi:10.2165/00003495-199753030-00008
  • Demeunynck, M., Bailly, C., & Wilson, W. D. (2006). Small molecule DNA and RNA binders: From synthesis to nucleic acid complexes. Hoboken, NJ: John Wiley & Sons.
  • Eriksson, M., & Nordén, B. (2001). Linear and circular dichroism of drug-nucleic acid complexes. Methods in Enzymology, 340, 68–98.
  • Fiebig, T., Wan, C., Kelley, S. O., Barton, J. K., & Zewail, A. H. (1999). Femtosecond dynamics of the DNA intercalator ethidium and electron transfer with mononucleotides in water. Proceedings of the National Academy of Sciences United States of America, 96(4), 1187–1192. doi:10.1073/pnas.96.4.1187
  • Froehlich, E., Mandeville, J. S., Weinert, C. M., Kreplak, L., & Tajmir-Riahi, H. A. (2011). Bundling and aggregation of DNA by cationic dendrimers. Biomacromolecules, 12(2), 511–517. doi:10.1021/bm1013102
  • Gao, Y.-G., Sriram, M., & Wang, A. H.-J. (1993). Crystallographic studies of metal ion-DNA interactions: Different binding modes of cobalt (II), copper (II) and barium (II) to N7of guanines in Z-DNA and a drug-DNA complex. Nucleic Acids Research, 21(17), 4093–4101. doi:10.1093/nar/21.17.4093
  • Glasel, J. (1995). Validity of nucleic acid purities monitored by 260 nm/280 nm absorbance ratios. Biotechniques, 18(1), 62–63.
  • Gray, D. M., Hung, S.-H., & Johnson, K. H. (1995). Absorption and circular dichroism spectroscopy of nucleic acid duplexes and triplexes Methods in Enzymology, 246, 19–34.
  • Guan, L., & Disney, M. D. (2012). Recent advances in developing small molecules targeting RNA. ACS Chemical Biology, 7(1), 73–86. doi:10.1021/cb200447r
  • Hadian Rasanani, S., Eslami Moghadam, M., Soleimani, E., Divsalar, A., Ajloo, D., Tarlani, A., & Amiri, M. (2018). Anticancer activity of new imidazole derivative of 1R, 2R-diaminocyclohexane palladium and platinum complexes as DNA fluorescent probes. Journal of Biomolecular Structure and Dynamics, 36(12), 3058–3076. doi:10.1080/07391102.2017.1385538
  • Hamilton, P. L., & Arya, D. P. (2012). Natural product DNA major groove binders. Natural Product Reports, 29(2), 134–143. doi:10.1039/C1NP00054C
  • Hangauer, M. J., Vaughn, I. W., & McManus, M. T. (2013). Pervasive transcription of the human genome produces thousands of previously unidentified long intergenic noncoding RNAs. PLoS Genetics, 9(6), e1003569. doi:10.1371/journal.pgen.1003569
  • Hingerty, B., Brown, R., & Jack, A. (1978). Further refinement of the structure of yeast tRNAPhe. Journal of Molecular Biology, 124(3), 523–534.
  • Hossain, M., Kabir, A., & Suresh Kumar, G. (2012). Binding of the anticancer alkaloid sanguinarine with tRNAphe: Spectroscopic and calorimetric studies. Journal of Biomolecular Structure and Dynamics, 30(2), 223–234. doi:10.1080/07391102.2012.677774
  • Huarte, M., & Rinn, J. L. (2010). Large non-coding RNAs: Missing links in cancer? Human Molecular Genetics, 19(R2), R152–R161. doi:10.1093/hmg/ddq353
  • Hurley, L. H. (2002). DNA and its associated processes as targets for cancer therapy. Nature Reviews Cancer, 2(3), 188. doi:10.1038/nrc749
  • Islam, M. M., Sinha, R., & Kumar, G. S. (2007). RNA binding small molecules: studies on t-RNA binding by cytotoxic plant alkaloids berberine, palmatine and the comparison to ethidium. Biophysical Chemistry, 125(2–3), 508–520. doi:10.1016/j.bpc.2006.11.001
  • Jones, S., Daley, D. T., Luscombe, N. M., Berman, H. M., & Thornton, J. M. (2001). Protein–RNA interactions: A structural analysis. Nucleic Acids Research, 29(4), 943–954. doi:10.1093/nar/29.4.943
  • Joozdani, F. A., Yari, F., Joozdani, P. A., & Nafisi, S. (2015). Interaction of sulforaphane with DNA and RNA. PLoS One, 10(6), e0127541. doi:10.1371/journal.pone.0127541
  • Kanakis, C. D., Tarantilis, P. A., Pappas, C., Bariyanga, J., Tajmir-Riahi, H. A., & Polissiou, M. G. (2009). An overview of structural features of DNA and RNA complexes with saffron compounds: Models and antioxidant activity. Journal of Photochemistry and Photobiology B, 95(3), 204–212. doi:10.1016/j.jphotobiol.2009.03.006
  • Kanakis, C. D., Tarantilis, P. A., Tajmir-Riahi, H. A., & Polissiou, M. G. (2007). Interaction of tRNA with safranal, crocetin, and dimethylcrocetin. Journal of Biomolecular Structure & Dynamics, 24(6), 537–546. doi:d = 3028&c = 4231&p = 15873&do = detail [pii] doi:10.1080/07391102.2007.10507142
  • Karami, K., Mehri Lighvan, Z., Farrokhpour, H., Dehdashti Jahromi, M., & Momtazi-Borojeni, A. A. (2018). Synthesis and spectroscopic characterization study of new palladium complexes containing bioactive O, O-chelated ligands: Evaluation of the DNA/protein BSA interaction, in vitro antitumoural activity and molecular docking. Journal of Biomolecular Structure and Dynamics, 36(13), 3324–3340. doi:10.1080/07391102.2017.1391125
  • Kazarian, S. G., & Chan, K. A. (2013). ATR-FTIR spectroscopic imaging: Recent advances and applications to biological systems. The Analyst, 138(7), 1940–1951. doi:10.1039/c3an36865c
  • Kosiha, A., Parthiban, C., Ciattini, S., Chelazzi, L., & Elango, K. P. (2018). Metal complexes of naphthoquinone based ligand: Synthesis, characterization, protein binding, DNA binding/cleavage and cytotoxicity studies. Journal of Biomolecular Structure and Dynamics, 36(16), 4170–4181. doi:10.1080/07391102.2017.1413423
  • Kypr, J., Kejnovská, I., Bednářová, K., & Vorlíčková, M. (2012). Circular dichroism spectroscopy of nucleic acids. Comprehensive Chiroptical Spectroscopy: Applications in Stereochemical Analysis of Synthetic Compounds, Natural Products, and Biomolecules, 2, 575–586.
  • Le, S. Y., Zhang, K., & Maizel, J. V Jr. (2002). RNA molecules with structure dependent functions are uniquely folded. Nucleic Acids Research, 30(16), 3574–3582. doi:10.1093/nar/gkf473
  • López-Lorente, Á. I., & Mizaikoff, B. (2016). Mid-infrared spectroscopy for protein analysis: Potential and challenges. Analytical and Bioanalytical Chemistry, 408(11), 2875–2889. doi:10.1007/s00216-016-9375-5
  • Lyles, M. B., & Cameron, I. L. (2002). Interactions of the DNA intercalator acridine orange, with itself, with caffeine, and with double stranded DNA. Biophysical Chemistry, 96(1), 53–76. doi:10.1016/S0301-4622(02)00036-4
  • Mansouri-Torshizi, H., Zareian-Jahromi, S., Abdi, K., & Saeidifar, M. (2018). Nonionic but water soluble,[Glycine-Pd-Alanine] and [Glycine-Pd-Valine] complexes. Their synthesis, characterization, antitumor activities and rich DNA/HSA interaction studies. Journal of Biomolecular Structure and Dynamics, 1–17. doi:10.1080/07391102.2018.1520647
  • Moradi, Z., Khorasani-Motlagh, M., Rezvani, A. R., & Noroozifar, M. (2018). Evaluation of DNA, BSA binding, and antimicrobial activity of new synthesized neodymium complex containing 29-dimethyl 110-phenanthroline. Journal of Biomolecular Structure and Dynamics, 36(3), 779–794. doi:10.1080/07391102.2017.1288170
  • Moradi, Z., Khorasani-Motlagh, M., Rezvani, A. R., & Noroozifar, M. (2019). Electronic and fluorescent studies on the interaction of DNA and BSA with a new ternary praseodymium complex containing 2, 9-dimethyl 1, 10-phenanthroline and antibacterial activities testing. Journal of Biomolecular Structure and Dynamics, 37(9), 2283–2295. doi:10.1080/07391102.2018.1479657
  • Morris, G. M., Goodsell, D. S., Halliday, R. S., Huey, R., Hart, W. E., Belew, R. K., & Olson, A. J. (1998). Automated docking using a Lamarckian genetic algorithm and emperical binding free energy function. Journal of Computational Chemistry, 19(14), 1639–1662. doi:10.1002/(SICI)1096-987X(19981115)19:14<1639::AID-JCC10>3.0.CO;2-B
  • Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., & Olson, A. J. (2009). AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of Computational Chemistry, 30(16), 2785–2791. doi:10.1002/jcc.21256
  • Movasaghi, Z., Rehman, S., & Ur Rehman, D. I. (2008). Fourier transform infrared (FTIR) spectroscopy of biological tissues. Applied Spectroscopy Reviews, 43(2), 134–179. doi:10.1080/05704920701829043
  • Mross, K., Maessen, P., V. D., Vijgh, W., Gall, H., Boven, E., & Pinedo, H. (1988). Pharmacokinetics and metabolism of epirubicin and doxorubicin in humans. Journal of Clinical Oncology, 6, 517–526.
  • Musselman, C., Pitt, S. W., Gulati, K., Foster, L. L., Andricioaei, I., & Al-Hashimi, H. M. (2006). Impact of static and dynamic A-form heterogeneity on the determination of RNA global structural dynamics using NMR residual dipolar couplings. Journal of Biomolecular NMR, 36(4), 235–249. doi:10.1007/s10858-006-9087-9
  • Nafisi, S., Shadaloi, A., Feizbakhsh, A., & Tajmir-Riahi, H. A. (2009). RNA binding to antioxidant flavonoids. Journal of Photochemistry and Photobiology. B, Biology, 94(1), 1–7. doi:10.1016/j.jphotobiol.2008.08.001
  • Nowakowski, J., & Tinoco, I. Jr. (1997). Seminars in virology. RNA Structure and Stability, 8(3), 153–165.
  • Panigrahi, S. K., & Desiraju, G. R. (2007). Strong and weak hydrogen bonds in the protein–ligand interface. Proteins: Structure, Function, and Bioinformatics, 67(1), 128–141. doi:10.1002/prot.21253
  • Pantaleo, V., Szittya, G., & Burgyán, J. (2007). Molecular bases of viral RNA targeting by viral small interfering RNA-programmed RISC. Journal of Virology, 81(8), 3797–3806. doi:10.1128/JVI.02383-06
  • Patra, D., Paul, S., Sepay, N., Kundu, R., & Ghosh, T. (2018). Structure-activity relationship on DNA binding and anticancer activities of a family of mixed-ligand oxidovanadium (V) hydrazone complexes. Journal of Biomolecular Structure and Dynamics, 36(16), 4143–4155. doi:10.1080/07391102.2017.1409652
  • Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., & Ferrin, T. E. (2004). UCSF Chimera-a visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25(13), 1605–1612. doi:10.1002/jcc.20084
  • Podell, E. R., Harrington, D. J., Taatjes, D. J., & Koch, T. H. (1999). Crystal structure of epidoxorubicin-formaldehyde virtual crosslink of DNA and evidence for its formation in human breast-cancer cells. Acta Crystallographica Section D Biological Crystallography, 55(9), 1516–1523. (Pt doi:10.1107/S0907444999008161
  • Purcell, M., Neault, J. F., & Tajmir-Riahi, H. A. (2000). Interaction of taxol with human serum albumin. Biochim Biophys Acta, 1478(1), 61–68. doi:10.1016/S0167-4838(99)00251-4
  • Rajski, S. R., & Williams, R. M. (1998). DNA cross-linking agents as antitumor drugs. Chemical Reviews, 98(8), 2723–2796.
  • Ray, B., Agarwal, S., Kadian, H., Gambhir, K., Sharma, P., & Mehrotra, R. (2017). Deciphering molecular aspects of interaction between anticancer drug mitoxantrone and tRNA. Journal of Biomolecular Structure and Dynamics, 35(10), 2090–2102. doi:10.1080/07391102.2016.1213185
  • Ray, B., Agarwal, S., Lohani, N., Rajeswari, M. R., & Mehrotra, R. (2016). Structural, conformational and thermodynamic aspects of groove-directed-intercalation of flavopiridol into DNA. Journal of Biomolecular Structure and Dynamics, 34(11), 2518–2535. doi:10.1080/07391102.2015.1118708
  • Ray, B., Gupta, B., & Mehrotra, R. (2018). Binding of platinum derivative, oxaliplatin to deoxyribonucleic acid: structural insight into antitumor action. Journal of Biomolecular Structure and Dynamics, 1–10. doi:10.1080/07391102.2018.1531059
  • Robert, J. (2005). Anthracyclines. Cancer clinical pharmacology (1st ed., pp. 117–133). Oxford, UK: Oxford University Press.
  • Shahabadi, N., Shadkam, M., & Mansouri, K. (2018). DNA binding and cytotoxicity studies of magnetic nanofluid containing antiviral drug oseltamivir. Journal of Biomolecular Structure and Dynamics, 1–9. doi:10.1080/07391102.2018.1502685
  • Sussman, J. L., Holbrook, S. R., Warrant, R. W., Church, G. M., & Kim, S. H. (1978). Crystal structure of yeast phenylalanine transfer RNA. I. Crystallographic refinement. Journal of Molecular Biology, 123(4), 607–630.
  • Takeshita, F., & Ochiya, T. (2006). Therapeutic potential of RNA interference against cancer. Cancer Science, 97(8), 689–696.
  • Tataurov, A. V., You, Y., & Owczarzy, R. (2008). Predicting ultraviolet spectrum of single stranded and double stranded deoxyribonucleic acids. Biophysical Chemistry, 133(1-3), 66–70.
  • Tyagi, G., Charak, S., & Mehrotra, R. (2012). Binding of an indole alkaloid, vinblastine to double stranded DNA: A spectroscopic insight in to nature and strength of interaction. Journal of Photochemistry and Photobiology B: Biology, 108, 48–52. doi:10.1016/j.jphotobiol.2011.12.009
  • Tyagi, G., Pradhan, S., Tapasya, S., & Ranjana, M. (2014). Nucleic acid binding properties of allicin: Spectroscopic analysis and estimation of anti-tumor potential. Biochimica et Biophysica Acta (BBA)-General Subjects, 1840(1), 350–356. doi:10.1016/j.bbagen.2013.09.007
  • Varani, L., Spillantini, M. G., Goedert, M., & Varani, G. (2000). Structural basis for recognition of the RNA major groove in the tau exon 10 splicing regulatory element by aminoglycoside antibiotics. Nucleic Acids Research, 28(3), 710–719.
  • Wang, M., Yu, Y., Liang, C., Lu, A., & Zhang, G. (2016). Recent advances in developing small molecules targeting nucleic acid. International Journal of Molecular Sciences, 17(6), 779. doi:10.3390/ijms17060779
  • Wilson, W., Mizan, S., Taniuos, F. A., Yao, S., & Zon, G. (1994). The interaction of intercalators and groove‐binding agents with DNA triple‐helical structures: the influence of ligand structure, DNA backbone modifications and sequence. Journal of Molecular Recognition, 7(2), 89–98. doi:10.1002/jmr.300070206
  • Wilson, W. D., Ratmeyer, L., Zhao, M., Strekowski, L., & Boykin, D. (1993). The search for structure-specific nucleic acid-interactive drugs: effects of compound structure on RNA versus DNA interaction strength. Biochemistry, 32(15), 4098–4104. doi:10.1021/bi00066a035
  • Yoshizawa, S., Fourmy, D., Eason, R. G., & Puglisi, J. D. (2002). Sequence-specific recognition of the major groove of RNA by deoxystreptamine. Biochemistry, 41(20), 6263–6270. doi:10.1021/bi0121609
  • Zhou, X., Zhang, C., Zhang, G., & Liao, Y. (2016). Intercalation of the daphnetin–Cu (II) complex with calf thymus DNA. RSC Advances, 6(7), 5408–5418. doi:10.1039/C5RA22274E

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.