280
Views
8
CrossRef citations to date
0
Altmetric
Research Articles

Studies on the interaction between HSA and new halogenated metformin derivatives: influence of lipophilic groups in the binding ability

, , , , , , , , , , & show all
Pages 2128-2140 | Received 29 Mar 2019, Accepted 23 May 2019, Published online: 11 Jun 2019

References

  • Bertucci, C., & Domenici, E. (2002). Reversible and covalent binding of drugs to human serum albumin. Methodological approaches and physiological relevance. Current Medicinal Chemistry, 9(15), 1463–1481. doi:10.2174/0929867023369673
  • Bi, S., Ding, L., Tian, Y., Song, D., Zhou, X., Liu, X., & Zhang, H. J. (2004). Investigation of the interaction between flavonoids and human serum albumin. Journal of Molecular Structure, 703(1-3), 37–45. doi:10.1016/j.molstruc.2004.05.026
  • Campbell, R. K., White, J. R., Jr., & Saulie, B. A. (1996). Metformin: A new oral biguanide. Clinical Therapeutics, 18(3), 360–371. doi:10.1016/S0149-2918(96)80017-8
  • Carter, D. C., & Ho, J. X. (1994). Structure of serum albumin. Advances in Protein Chemistry, 45, 153–203. doi:10.1016/S0065-3233(08)60640-3
  • Chaves, O. A., Jesus, C. S. H., Henriques, E. S., Brito, R. M. M., & Serpa, C. (2016). In situ ultra-fast heat deposition does not perturb the structure of serum albumin. Photochemical & Photobiological Sciences, 15(12), 1524–1535. doi:10.1039/C6PP00209A
  • Chaves, O. A., Mathew, B., Joy, M., Lohidakshan, K. L., Marathakam, A., & Netto-Ferreira, J. C. (2018a). Introduction of fluorinated environment on metformin. Evaluation of its serum-albumin interaction with molecular modeling studies. Journal of Molecular Liquids, 260, 186–194. doi:10.1016/j.molliq.2018.03.083
  • Chaves, O. A., Santos, M. R. L., de Oliveira, M. C. C., Sant'Anna, C. M. R., Ferreira, R. C., Echevarria, A., & Netto-Ferreira, J. C. (2018b). Synthesis, tyrosinase inhibition and transportation behavior of novel β-enaminothiosemicarbazide derivatives by human serum albumin. Journal of Molecular Liquids, 254, 280–290. doi:10.1016/j.molliq.2018.01.083
  • Chaves, O. A., de Oliveira, C. H. C. S., Ferreira, R. C., Pereira, R. P., de Melos, J. L. R., Rodrigues-Santos, C. E., … Cesarin-Sobrinho, D. (2017). Investigation of interaction between human plasmatic albumin and potential fluorinated anti-trypanosomal drugs. Journal of Fluorine Chemistry, 199, 103–112. doi:10.1016/j.jfluchem.2017.05.001
  • Chen, Y. H., Yang, J. T., & Martinez, H. M. (1972). Determination of the secondary structures of proteins by circular dichroism and optical rotatory dispersion. Biochemistry, 11(22), 4120–4131. doi:10.1021/bi00772a015
  • Diniz, A., Escuder-Gilabert, L., Lopes, N. P., Villanueva-Camañas, R. M., Sagrado, S., & Medina-Hernández, M. J. (2008). Characterization of interactions between polyphenolic compounds and human serum proteins by capillary electrophoresis. Analytical and Bioanalytical Chemistry, 391(2), 625–632. doi:10.1007/s00216-008-2046-4
  • Dugaiczyk, A., Law, S. W., & Dennison, O. E. (1982). Nucleotide sequence and the encoded amino acids of human serum albumin mRNA. Proceedings of the National Academy of Science of the United States of America, 79(1), 71–75. doi:10.1073/pnas.79.1.71
  • Frostell-Karlsson, Å., Remaeus, A., Roos, H., Andersson, K., Borg, P., Hämäläinen, M., & Karlsson, R. (2000). Biosensor analysis of the interaction between immobilized human serum albumin and drug compounds for prediction of human serum albumin binding levels. Journal of Medicinal Chemistry, 43(10), 1986–1992. doi:10.1021/jm991174y
  • He, W. Y., Li, Y., Si, H. Z., Dong, Y. M., Sheng, F. L., Yao, X. J., & Hu, Z. D. (2006). Molecular modeling and spectroscopic studies on the binding of guaiacol to human serum albumin. Journal of Photochemical and Photobiology A: Chemistry, 182(2), 158–167. doi:10.1016/j.jphotochem.2006.02.004
  • He, X. M., & Carter, D. C. (1992). Atomic structure and chemistry of human serum albumin. Nature, 358(6383), 209–215. doi:10.1038/358209a0
  • Huttunen, K. M., Mannila, A., Laine, K., Kemppainen, E., Leppänen, J., Vepsäläinen, J., … Rautio, J., (2009). The first bioreversibleprodrug of metformin with improved lipophilicity and enhanced intestinal absorption. Journal of Medicinal Chemistry, 52(14), 4142–4148. doi:10.1021/jm900274q
  • Jia, Z., Ramstad, T., & Zhong, M. (2002). Determination of protein-drug binding constants by pressure-assisted capillary electrophoresis (PACE)/frontal analysis. Journal of Pharmaceutical and Biomedical Analysis, 30(3), 405–413. doi:10.1016/S0731-7085(02)00223-6
  • Jiménez, M. C., Miranda, M. A., & Vayá, I. (2005). Triplet excited states as chiral reporters for the binding of drugs to transport proteins. Journal of the American Chemical Society, 127(29), 10134–10135. doi:10.1021/ja0514489
  • Kalyanaraman, B., Cheng, G., Hardy, M., Ouari, O., Sikora, A., Zielonka1, J., & Dwinell, M. B. (2017). Modified metformin as a more potent anticancer drug: Mitochondrial inhibition, redox signaling, antiproliferative effects and future EPR studies. Cell Biochemistry and Biophysics, 77, 311–317. doi:10.1007/s12013-017-0796-3
  • Kordes, S., Pollak, M. N., Zwinderman, A. H., Mathôt, R. A., Weterman, M. J., Beeker, A., … Wilmink, J. W. (2015). Metformin in patients with advanced pancreatic cancer: A double-blind, randomised, placebo-controlled phase 2 trial. The Lancet Oncology, 16(7), 839–847. doi:10.1016/S1470-2045(15)00027-3
  • Lee, C., Yang, W., & Parr, R. G. (1988). Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Physical Review B, 37(2), 785–789. PMID:9944570. doi:10.1103/PhysRevB.37.785
  • Liu, E. H., Qi, L. W., & Li, P. (2010). Structural relationship and binding mechanisms of five flavonoids with bovine serum albumin. Molecules, 15(12), 9092–9103. doi:10.3390/molecules15129092
  • Lovell, S. C., Word, J. M., Richardson, J. S., & Richardson, D. C. (2000). The penultimate rotamer library. Proteins, 40(3), 389–408. doi: 10.1103/PhysRevB.37.785.
  • Lucas, L. H., Price, K. E., & Larive, C. K. (2004). Epitope mapping and competitive binding of HSA drug site II ligands by NMR diffusion measurements. Journal of the American Chemical Society, 126(43), 14258–14266. doi:10.1021/ja0479538
  • Mahmoud, M. A., Zaitone, S. A., Ammar, A. M., & Sallam, S. A. (2016). Synthesis, structure and antidiabetic activity of chromium(III) complexes of metformin Schiff-bases. Journal of Molecular Structure, 1108, 60–70. doi:10.1080/22243682.2017.1296370
  • Markowicz-Piasecka, M., Huttunen, K. M., Mateusiak, L., Mikiciuk-Olasik, E., & Sikora, J. (2017). Is metformin a perfect drug? Updates in pharmacokinetics and pharmacodynamics. Current Pharmaceutical Design, 23, 2532–2550. doi:10.2174/1381612822666161201152941
  • Mathew, B., Adeniyi, A. A., Joy, M., Mathew, G. E., Singh-Pillay, A., Sudarsanakumar, C., … Suresh, J. (2017). Anti-oxidant behavior of functionalizedchalcone - A combined quantum chemical and crystallographic structural investigation. Journal of Molecular Structure, 1146, 301–308. doi:10.1016/j.molstruc.2017.05.100
  • Migdadi, E. M., Courtenay, A. J., Tekko, I. A., McCrudden, M. T. C., Kearney, M. C., McAlister, E., … Donnelly, R. F. (2018). Hydrogel-forming microneedles enhance transdermal delivery of metformin hydrochloride. Journal of Control Release, 280, 15–27. doi:10.1016/j.jconrel.2018.07.009
  • Moriyama, Y., Ohta, D., Hachiya, K., Mitsui, Y., & Takeda, K. (1996). Fluorescence behavior of tryptophan residues of bovine and human serum albumin in ionic surfactant solutions: A comparative study of the two and one tryptophan of bovine and human albumins. Journal of Protein Chemistry, 15(3), 265–272. doi:10.1007/BF01887115
  • Papadopoulou, A., Green, R. J., & Frazier, R. A. (2005). Interaction of flavonoids with bovine serum albumin: A fluorescence quenching study. Journal of Agricultural and Food Chemistry, 53(1), 158–163. doi:10.1021/jf048693g
  • Parikh, H. H., McElwain, K., Balasubramanian, V., Leung, W., Wong, D., Morris, M. E., & Ramanathan, M. (2000). A rapid spectrofluorimetric technique for determining drug-serum protein binding suitable for high-throughput screening. Pharmaceutical Research, 17(5), 632–637. [Mismatch] doi:10.1023/A:1007537520620
  • Pasricha, S., Sharma, D., Ojha, H., Gahlot, P., Pathak, M., Basu, M., … Shukla, S. (2017). Luminescence, circular dichroism and in silico studies of binding interaction of synthesized naphthylchalcone derivatives with bovine serum albumin. Luminescence, 32(7), 1252–1262. doi:10.1002/bio.3319
  • Pathak, M., Ojha, H., Tiwari, A. K., Sharma, D., Saini, M., & Kakkar, R. (2017). Design, synthesis and biological evaluation of antimalarial activity of new derivatives of 2,4,6-s-triazine. Chemistry Central Journal, 11, 132–142. doi:10.1186/s13065-017-0362-5
  • Peters, T. (1985). Serum albumin. Advances in Protein Chemistry, 37, 161–245. doi: 10.1016/S0065-3233(08)60065-0.
  • Peura, L., & Huttunen, K. M. (2014). Sustained release of metformin via red blood cell accumulated sulfenamide prodrug. Journal of Pharmaceutical Science, 16, 2207–2210. doi:10.1002/jps.24040
  • Rahnama, E., Mahmoodian-Moghaddam, M., Khorsand-Ahmadi, S., Saberi, M. R., & Chamani, J. (2015). Binding site identification of metformin to human serum albumin and glycated human serum albumin by spectroscopic and molecular modeling techniques: A comparison study. Journal of Biomolecular Structure and Dynamics, 33(3), 513–533. doi:10.1080/07391102.2014.893540
  • Ross, P. D., & Subramanian, S. (1981). Thermodynamics of protein association reactions: Forces contributing to stability. Biochemistry, 20(11), 3096–3102. doi:10.1021/bi00514a017
  • Sharma, D., Ojha, H., Pathak, M., Singh, B., Sharma, N., Singh, A., … Sharma, R. K. (2016). Spectroscopic and molecular modeling studies of binding mechanism of metformin with bovine serum albumin. Journal of Molecular Structure, 1118, 267–274. doi:10.1016/j.molstruc.2016.04.030
  • Sharma, D., Sharma, N., Pathak, M., Sharma, R., Tyagi, P., Chawla, R., … Ojha, H. (2017). Homology modeling and docking studies of VP24 protein of Ebola virus with an antiviral drug and its derivatives. Chemical Biology Letters, 4, 27–32.
  • Tong, J. Q., Tian, F. F., Li, Q., Li, L. L., Xiang, Q., Liu, Y., … Jiang, F. L. (2012). Probing the adverse temperature dependence in the static fluorescence quenching of BSA induced by a novel anticancer hydrazone. Photochemical & Photobiological Sciences, 11(12), 1868–1879. doi:10.1039/c2pp25162k
  • Vayá, I., Jiménez, M. C., & Miranda, M. A. (2008). Transient absorption spectroscopy for determining multiple site occupancy in drug-protein conjugates. A comparison between human and bovine serum albumins using flurbiprofen methyl ester as a probe. The Journal of Physical Chemistry B, 112(9), 2694–2699. doi:10.1021/jp076960q
  • Verdonk, M. L., Cole, J. C., Hartshorn, M. J., Murray, C. W., & Taylor, R. D. (2003). Improved protein-ligand docking using GOLD. Proteins: Structure, Function, and Bioinformatics, 52(4), 609–623. doi:10.1002/prot.10465
  • Wardell, M., Wang, Z., Ho, J. X., Robert, J., Ruker, F., Ruble, J., & Carter, D. C. (2002). The atomic struscture of human methemalbumin at 1.9Å. BiochemIcal and Biophysical Research Communication, 291(4), 813–819. doi:10.1006/bbrc.2002.6540
  • Xiao, C. Q., Jiang, F. L., Zhou, B., Li, R., & Liu, Y. (2011). Interaction between a cationic porphyrin and bovine serum albumin studied by surface Plasmon resonance, fluorescence spectroscopy and cyclic voltammetry. Photochemical & Photobiological Sciences, 10(7), 1110–1117. doi:10.1039/c1pp05008g
  • Yeggoni, D. P., Rachamallu, A., Kallubai, M., & Subramanyam, R. (2015). Cytotoxic and comparative binding mechanism of piperine with human serum albumin and 1-acid glycoprotein. Journal of Biomolecular Structure and Dynamics, 33(6), 1336–1351. doi:10.1080/07391102.2014.947326
  • Zhou, B., Li, R., Zhang, Y., & Liu, Y. (2008). Kinetic analysis of the interaction between amphotericin B and human serum albumin using surface plasmon resonance and fluorescence spectroscopy. Photochemical & Photobiological Sciences, 7(4), 453–459. doi:10.1039/b717897b
  • Zini, R., Morin, D., Jouenne, P., & Tillement, J. P. (1988). Cicletanine binding to human plasma proteins and erythrocytes, a particular HSA-drug interaction. Life Sciences, 43(25), 2103–2115. doi:10.1016/0024-3205(88)90360-8

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.